首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,且r(A)==r<n,其中. (Ⅰ)证明方程组AX=b有且仅有n—r+1个线性无关解; (Ⅱ)若有三个线性无关解,求a,b及方程组的通解.
设A为m×n矩阵,且r(A)==r<n,其中. (Ⅰ)证明方程组AX=b有且仅有n—r+1个线性无关解; (Ⅱ)若有三个线性无关解,求a,b及方程组的通解.
admin
2014-11-26
41
问题
设A为m×n矩阵,且r(A)=
=r<n,其中
.
(Ⅰ)证明方程组AX=b有且仅有n—r+1个线性无关解;
(Ⅱ)若
有三个线性无关解,求a,b及方程组的通解.
选项
答案
(Ⅰ)令ξ
1
,ξ
2
,…,ξ
n-r
为Ax=0的基础解系,η
0
为AX=b的特解,显然β
0
=η
0
,β
1
=ξ
1
+η
0
,…,β
n-r
=ξ
n-r
+η
0
为AX=b的一组解,令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+(k
0
+k
1
+…+k
n-r
)η
0
=0?上式左乘A得(k
0
+k
1
+…+k
n-r
)b=0,因为b≠0时,k
0
+k
1
+…+k
n-r
=0,于是k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
为AX=0的基础解系,所以k
1
=k
2
=…=k
n-r
=0,于是k
0
=0,故β
0
,β
1
,…,β
n-r
线性无关.若γ
0
,γ
1
,…,γ
n-r+1
为AX=b的线性无关解,则ξ
1
=γ
1
一γ
0
,…,ξ
n-r+1
=γ
n-r+1
一γ
0
为AX=0的解,令k
1
ξ
1
+k
2
ξ
2
+…+k
n-r+1
ξ
n-r+1
=0,则k
1
γ
1
+k
2
γ
2
+…+k
n-r+1
γ
n-r+1
一(k
1
+k
2
+…+k
n-r+1
)γ
0
=0.因为γ
0
,γ
1
,…,γ
n-r+1
线性无关,所以k
1
=k
2
…=k
n-r+1
=0,即ξ
1
,ξ
2
,…,ξ
n-r+1
为AX=0的线性无关解,矛盾,故方程组AX=b恰有n一r+1个线性无关解. (Ⅱ)令[*]化为 AX=β.因为AX=β有三个非零解,所以AX=0有两个非零解,故4一r(A)≥2,r(A)≤2,又因为r(A)≥2,所以r(A)=[*]=2. [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/J3cRFFFM
0
考研数学一
相关试题推荐
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:在(a,b)内,g(x)≠0.
设A为3阶方阵,A’为其伴随矩阵,且确定矩阵A*和A的秩;
已知3维向量组α1,α2,α3线性无关,则向量组α1-α2,α2-kα3,α3-α1线性无关的充要条件是________.
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3,α5线性表出,说明理由;
设A,B均为n阶矩阵,A可逆且A~B,则下列命题中:①AB~BA;②A2~B2;③AT~BT;④A-1~B-1.正确命题的个数为().
设二次型f(x1,x2,x3)=x12+2x22+ax32-4x1x2-4x2x3经正交变换化为标准形f=2y12+5y22+by32,则().
设线性方程组添加一个方程ax1+2x2+bx3-5x1=4=0后,成为方程组求方程组(*)的通解;
求一个以y1=tet,y2=sin2t为两个特解的四阶常系数齐次线性微分方程,并求其通解.
设当x→0时,(x-sinx)ln(1+x)是比高阶的无穷小,而是比1/x∫0x(1-cos2t)dt高阶的无穷小,则n为().
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.求P{Y≤X}.
随机试题
群落空间结构决定于两个要素,即群落中各物种的生活型和________。
关于使用刚果红进行淀粉样物质染色时,需注意的问题不包括
女,26岁,主诉:近半年全口牙龈逐渐肿大,刷牙易出血,偶有自动出血史诊断前应重点做如下检查,除了
A.至少检查一个最小包装B.可不打开最小包装C.应当开箱检查至最小包装D.可不开箱检查生产企业有特殊质量控制要求或者打开最小包装可能影响药品质量的
2岁小儿,多汗、烦躁、前囟未闭、方颅、鸡胸、"O"形腿,血清钙、磷均低于正常。考虑为
关于心理测试,下列表述正确的是()。(2004年11月二级真题)
在心理辅导的行动演练方法中,()的目的是促进个体在人际关系中公开表达自己的真实情感和观点,维护自己的权益也尊重别人的权益。这一方法通过角色扮演以增强自信心,然后再将学得的应对方式用到实际生活情境中。
下列各句中,有语病的一项是()。
2007年全球金融海啸肆虐,以家电为代表的消费性电子产品外销的需求急速衰退,家电企业可谓__________。为了扩大国内市场,也为了让国内家电企业走出低谷,家电下乡、以旧换新、节能补贴等政策陆续出台。这些扶持性政策__________,对家电业发展产生
TimberwolvesareMarchingtoaNewTune森林狼按新的节拍在前进Forthepastsevenyears,KevinMcHalehasstruggl
最新回复
(
0
)