设f(x)在[a,b]上连续且严格单调增加.证明:(a+b)∫ab f(x)dx<2 ∫ab xf(x)dx.

admin2015-07-22  28

问题 设f(x)在[a,b]上连续且严格单调增加.证明:(a+b)∫ab f(x)dx<2 ∫ab xf(x)dx.

选项

答案令F(t)=(a+t)∫at f(x)dx一2 ∫atf(x)dx,则 F’(t)一∫atf(x)dx+(a+t)f(t)一2tf(t) =∫atf(x)dx一(t一a)f(t)=∫at f(x)dx—∫at f(t)dx =∫atf(x)一f(t)]dx. 因为a≤x≤t,且f(x)在[a,b]上严格单调增加,所以f(x)一f(t)≤0,于是有 F’(t)=∫at [f(x)一f(t)]dx≤0,即F(t)单调递减,又F(a)=0,所以F(b)<0,即 (a+b)∫ab f(x)dx-2∫abxf(x)dx<0, 即(a+b)∫ab f(x)dx<2∫abxf(x)dx.

解析
转载请注明原文地址:https://jikaoti.com/ti/J2NRFFFM
0

最新回复(0)