设f(x)在(一∞,+∞)内连续,且∫02x+3y+1f(t)dt=F(x,y),L为从原点到点(1,1)的任意简单光滑曲线,则积分∫Lf(2x+3y+1)(2dx+3dy)等于:

admin2017-06-16  11

问题 设f(x)在(一∞,+∞)内连续,且∫02x+3y+1f(t)dt=F(x,y),L为从原点到点(1,1)的任意简单光滑曲线,则积分∫Lf(2x+3y+1)(2dx+3dy)等于:

选项 A、f(6)一f(1)
B、F(1,1)一F(0,0)
C、f(1)一f(0)
D、F(6,6)一F(1,1)

答案B

解析Lf(2z+3y+1)(2dx+3dy)=∫Lf(2x+3y+1)d(2x+3y+1)
=∫Ld∫02x+3y+1d(t)dt
=∫LdF(x,y)|(0,0)(1,1)=F(1,1)-F(0,0)。
转载请注明原文地址:https://jikaoti.com/ti/Iu3hFFFM
0

最新回复(0)