首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(15)设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
(15)设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
admin
2018-08-01
45
问题
(15)设二次型f(x
1
,x
2
,x
3
)在正交变换x=Py下的标准形为2y
1
2
+y
2
2
-y
3
2
,其中P=(e
1
,e
2
,e
3
).若Q=(e
1
,-e
3
,e
2
),则f(x
1
,x
2
,x
3
)在正交变换x=Qy下的标准形为
选项
A、2y
1
2
-y
2
2
+y
3
2
.
B、2y
1
2
+y
2
2
-y
3
2
.
C、2y
1
2
-y
2
2
-y
3
2
.
D、2y
1
2
+y
2
2
+y
3
2
.
答案
A
解析
设二次型的矩阵为A,则由题意知矩阵P的列向量e
1
,e
2
,e
3
是矩阵A的标准正交的特征向量,对应的特征值依次是2,1,-1.即有
Ae
1
=2e
1
,Ae
2
=2e
2
,Ae
3
=2e
3
从而有
AQA(e
1
,-e
3
,e
2
)=(Ae
1
,-Ae
3
,Ae
2
)=(2e
1
,-(-e
3
),e
2
)
=(e
1
,-e
3
,e
2
)
矩阵Q的列向量e
1
,-e
3
,e
2
仍是A的标准正交的特征向量,对应的特征值依次是2,-1,1.矩阵Q是正交矩阵,有Q
-1
=Q
T
,上式两端左乘Q
-1
,得
Q
-1
AQ=Q
T
AQ=
从而知f在正交变换x=Py下的标准形为f=2y
1
2
-y
2
2
+y
3
2
.于是选(A).
转载请注明原文地址:https://jikaoti.com/ti/I8WRFFFM
0
考研数学二
相关试题推荐
已知在x>0处有二阶连续导数,且满足.求f(u)的表达式.
已知函数f(x)=求f(x)零点的个数.
设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积,若V1=V2,求A的值.
设矩阵A=b=若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为
用正交变换法化二次型f(x1,x2,x3)=x12+x2x2+x3x2-4x1x2-4x1x3-4x2x3为标准二次型
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则().
证明:若矩阵A可逆,则其逆矩阵必然唯一.
用变量代换x=lnt将方程化为y关于t的方程,并求原方程的通解.
设f(x)为二阶可导的偶函数,f(0)=1,f"(0)=2且f"(x)在x=0的邻域内连续,则=_______
设齐次线性方程组,其中ab≠0,72≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
随机试题
简述记账凭证账务处理程序的步骤。
最易发生潜伏感染的病毒是
正常心脏和大血管的阴影可随身体的不同情况而改变,影响最小的因素是()
不符合瓦斯检查员工作要求的行为是()。
常见建筑结构体系中,适用房屋高度最小的是()。
得寸进尺。
我国现代第一个学制是1904年清政府颁布的《奏定学堂章程》。()
根据《票据法》规定,汇票承兑是指汇票付款人承诺在汇票到期日支付汇票金额的票据行为。定日付款或者出票后定期付款的汇票,持票人应当在汇票到期日前向付款人提示承兑;见票后定期付款的汇票,持票人应当自出票日起一个月内向付款人提示承兑。汇票未按照规定期限提示承兑的,
某市甲区居民徐某未经批准在乙区非规划区内建房,被乙区城建局勒令拆除,徐某不予理睬,乙区城建局预申请法院强制拆除,应向()提出申请。
使用PentiumⅢ500的微型计算机,其CPU的输入时钟频率是
最新回复
(
0
)