设随机变量X与Y的概率分布分别为 且P{X2=Y2}=1. (Ⅰ)求二维随机变量(X,Y)的概率分布; (Ⅱ)求Z=XY的概率分布; (Ⅲ)求X与Y的相关系数ρXY.

admin2019-07-23  28

问题 设随机变量X与Y的概率分布分别为

    且P{X2=Y2}=1.
    (Ⅰ)求二维随机变量(X,Y)的概率分布;
    (Ⅱ)求Z=XY的概率分布;
    (Ⅲ)求X与Y的相关系数ρXY

选项

答案(Ⅰ)由P(X2=Y2)=1,可得: P(X=0,Y=-1)=P(X=1,Y=0)=P(X=0,Y=1)=0 由联合分布律、边缘分布律之间的关系,可得(X,Y)的联合(含边缘)分布列如表所示. [*] (Ⅱ)由(X,Y)的联合分布列易知Z=XY可能取的值为-1,0,1,易得: [*] (Ⅲ)由(X,Y)的分布(及X,Y的分布),易知: [*] E(XY)=0×(-1)×0+0×0×[*]+0×1×0+1×(-1)×[*]+1×0×0+1×1×[*]=0 而E(X2)=02×[*], E(Y)2=(-1)2×[*], ∴DX=E(X2)-(EX)2=[*], DY=E(Y2)-(EY)2=[*], 故ρXY=[*]=0.

解析
转载请注明原文地址:https://jikaoti.com/ti/HwQRFFFM
0

最新回复(0)