首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
admin
2017-12-29
36
问题
已知A是三阶矩阵,α
i
(i=1,2,3)是三维非零列向量,令α=α
1
+α
2
+α
3
。若Aα
i
=iα
i
(i=1,2,3),证明:α,Aα,A
2
α线性无关。
选项
答案
由Aα
i
=iα
i
(i=1,2,3),且α
i
(i=1,2,3)非零可知,α
1
,α
2
,α
3
是矩阵A的属于不同特征值的特征向量,故α
1
,α
2
,α
3
线性无关。又 Aα=α
1
+2α
2
+3α
3
,A
2
α=α
1
+4α
2
+9α
3
, 所以 (α,Aα,A
2
α)=(α
1
,α
2
,α
3
)[*]=(α
1
,α
2
,α
3
)P, 而矩阵P是范德蒙德行列式,故|P|=2≠0,所以α,Aα,A
2
α线性无关。
解析
转载请注明原文地址:https://jikaoti.com/ti/HOKRFFFM
0
考研数学三
相关试题推荐
设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则()
设f(x)在区间[0,1]上连续,在(0,1)内可导,且满足f(1)=证明:存在ξ∈(0,1),使得f’(ξ)=2ξf(ξ).
设f(x)在(一∞,+∞)内连续,以T为周期,证明:∫a+Taf(x)dx=∫0Tf(x)dx(a为任意实数);
f(x)在[0,1]上有连续导数,且f(0)=0,证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
求不定积分∫(arcsinx)2dx.
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
求微分方程y"一2y’一e2x=0满足条件y(0)=1,y’(0)=1的特解.
设二次型f(x1,x2,x3)=ax12+ax22+(n一1)x23+2x1x3—2x2x3。求二次型f的矩阵的所有特征值;
设数列{xn}由递推公式(n=1,2,…)确定,其中a>0为常数,x0是任意正数,试证存在,并求此极限.
设f(x)=xsinx+cosx,下列命题中正确的是()
随机试题
沙眼衣原体是引起人类沙眼的病原体,也是引起非淋菌性尿道炎最常见的病原体。()
简述收集原始资料过程中存在的问题。
Mary’sprofessorhadher______papermanytimesbeforeallowinghertopresentittothecommittee.
阴茎再造术的主要内容是指
A、意外露髓B、充填体脱落C、继发龋D、乳牙内吸收E、充填体过高直接盖髓术的适应证是;
依据《规划环评条例》,环境影响评价文件由()编制或者组织规划环境影响评价技术机构编制。规划编制机关应当对环境影响评价文件的质量负责。
有一幼儿园,其耐火等级为三级,该幼儿园内设置了自动喷水灭火系统。已知托儿所、幼儿园类建筑一、二级和三级耐火等级位于两个安全出口之间的疏散门至最近安全出口的最大距离分别为25m和20m。该幼儿园位于两个安全出口之间的疏散门至最近安全出口的最大距离应为(
About50yearsagotheideaofdisabledpeopledoingsportswasneverheardof.Butwhentheannualgamesforthedisabledwere
AboutWetlandsintheU.S.A.Peopleenjoyafamoussoup(SHE-CRABSOUP)inNorthCarolinabecausethedaysoftheregionalsoup
She’sabitdowninthedumpsbecauseshehastotakeherexamsagain.Theunderlinedphrasemeans______.
最新回复
(
0
)