首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵 其中A*是A的伴随矩阵,E为n阶单位矩阵。 (Ⅰ)计算并化简PQ; (Ⅱ)证明矩阵Q可逆的充分必要条件是α2A—1α≠b。
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵 其中A*是A的伴随矩阵,E为n阶单位矩阵。 (Ⅰ)计算并化简PQ; (Ⅱ)证明矩阵Q可逆的充分必要条件是α2A—1α≠b。
admin
2017-12-29
52
问题
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵
其中A
*
是A的伴随矩阵,E为n阶单位矩阵。
(Ⅰ)计算并化简PQ;
(Ⅱ)证明矩阵Q可逆的充分必要条件是α
2
A
—1
α≠b。
选项
答案
(Ⅰ)由AA
*
=A
*
A=|A|E及A
*
=|A|A
—1
有 [*] (Ⅱ)由下三角形行列式及分块矩阵行列式的运算,有 [*] =|A|
2
(b一α
T
A
—1
α)。 因为矩阵A可逆,行列式|A|≠0,故|Q|=|A|(b一α
T
A
—1
α)。 由此可知,Q可逆的充分必要条件是b—α
T
A
—1
α≠0,即α
T
A
—1
α≠b。
解析
转载请注明原文地址:https://jikaoti.com/ti/HNKRFFFM
0
考研数学三
相关试题推荐
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明:其中Er是,r阶单位阵.
求函数y=excosx的极值.
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1~S2恒
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数。试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程
已知y1=xex+e2x和y2一xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
已知3阶矩阵A有特征值λ1=1,λ2=2,λ3=3,则2A*的特征值是()
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)(4)F(x)=f(x,y0)在点x0处可微,G(y)=f
设二次型f(x1,x2,x3)=2(a1x1,a2x2,a3x3)2+(b1x1,b2x2,b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解。
设A,B为三阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=____________。
随机试题
《罗马公约》有时被称为【】
以下关于口服降糖药叙述错误的是
酶能加速化学反应速度是属于哪一种效应
()是工程设计的最终阶段,设计文件必须完全满足设备和材料采购、非标准设备制作、建筑及安装工程施工的需要,并注明工程合理使用年限。
在设计合同履行过程中,设计审批部门拖延对设计文件审批的损失应由()承担。
2016年6月,京师商贸有限公司准备终止经营,经查实企业欠缴税款7000元,税务机关责令其限期10日内缴纳欠税,期满后京师公司仍未缴纳税款,为了不缴纳欠税,开始转移或者隐匿公司的财产。一经该县税务局局长批准,税务机关计划采取强制执行措施扣缴京师公司所欠税款
品牌按()分类,可以分为产品品牌、企业品牌和组织品牌。
目的是降低风险频率和减少损失程度,重点在于改变引起风险事故和扩大损失的各种条件的风险管理方法主要包括()。
以下关于幼儿园美术教育不正确的论述是()。
给定程序MODI1.C中函数fun的功能是:删除P所指字符串中的所有空白字符(包括制表符、回车符及换行符)。输入字符串时用’#’结束输入。请改正程序中的错误,使它能输出正确的结果。注意:不要改动main函数,不得增行或删行,也
最新回复
(
0
)