求函数f(x,y)=xy-4/3x-y在由抛物线y=4-x2(x≥0)与两个坐标轴所围成的平面闭区域D上的最大值和最小值。

admin2019-12-24  37

问题 求函数f(x,y)=xy-4/3x-y在由抛物线y=4-x2(x≥0)与两个坐标轴所围成的平面闭区域D上的最大值和最小值。

选项

答案区域D如图所示。 [*] (1)边界L1:y=0(0≤x≤2),此时f(x,0)=-4/3x,函数在此边界的最大值为f(0,0)=0,最小值为f(2,0)=-8/3。 边界L2:x=0(0≤y≤4)),则f(0,y)=-y,函数在此边界的最大值为f(0,0)=0,最小值为f(0,4)=-4。 边界L3:y=4-x2(x≥0),则 f(x,y)=xy-4/3x-y=x(4-x2)-4/3x-(4-x2), 令f’(x)=-3x2+2x+8/3=0, 解得x=-2/3(舍去),x=4/3,又因为 f’’(x)=-6x+2,f’’(4/3)<0, 故该函数在此边界的最大值为f(4/3,20/9)=-28/27。 (2)区域D内部f(x,y)=xy-4/3x-y,则 [*] 解得x=1,y=4/3, [*] 故AC-B2<0,函数在区域D内部不存在极值。 综上所述,函数在区域D上的最大f(0,0)=0;最小值为f(0,4)=-4。

解析 先画出区域图形,分别分析三个边界和区域
转载请注明原文地址:https://jikaoti.com/ti/GgiRFFFM
0

最新回复(0)