首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设随机变量X的密度函数f(x)=ce-λ|x|(λ>0,一∞<x<+∞),Y=|X|.(I)求常数c及EX,DX;(Ⅱ)问X与Y是否相关?为什么?(Ⅲ)问X与Y是否独立?为什么?
假设随机变量X的密度函数f(x)=ce-λ|x|(λ>0,一∞<x<+∞),Y=|X|.(I)求常数c及EX,DX;(Ⅱ)问X与Y是否相关?为什么?(Ⅲ)问X与Y是否独立?为什么?
admin
2018-11-20
24
问题
假设随机变量X的密度函数f(x)=ce
-λ|x|
(λ>0,一∞<x<+∞),Y=|X|.(I)求常数c及EX,DX;(Ⅱ)问X与Y是否相关?为什么?(Ⅲ)问X与Y是否独立?为什么?
选项
答案
(I)由于∫
-∞
+∞
f(x)dx=1,所以c∫
-∞
+∞
e
-λ|x|
dx=2c∫
0
+∞
e
-λx
dx=[*]=1故[*] 又f(x)是偶函数,且反常积分∫
-∞
+∞
xf(x)dx收敛,所以EX=∫
-∞
+∞
xf(x)=0, DX=EX
2
=∫
-∞
+∞
x
2
f(x)dx=[*](应用指数分布某些结果). (Ⅱ)由于f(x)是偶函数,故EXY=EX|X|=∫
-∞
+∞
x|x|f(x)dx=0,而EX=0,所以EXY=EX.EY,故X与Y不相关. (Ⅲ)下面我们应用事件关系证明X与Y=|X|不独立.因为 {|X|≤1}[*]{X≤1},又P{|X|≤1}=∫
-1
1
f(x)dx≠0,P{X≤1}=∫
-∞
1
f(x)dx≠1,所以{|X|≤1}与{X≤1}不独立(包含关系不独立),故X与Y=|X|不独立.
解析
转载请注明原文地址:https://jikaoti.com/ti/GcIRFFFM
0
考研数学三
相关试题推荐
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)一求f’(x);
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.一次性抽取4个球;
设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为________.
设矩阵求可逆矩阵P,使得PTA2P为对角矩阵.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=0,其中求矩阵A.
质量为lg的质点受外力作用作直线运动,外力和时间成正比,和质点的运动速度成反比,在t=10s时,速度等于50cm/s.外力为39.2cm/s2,问运动开始1min后的速度是多少?
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:不超过三次取到次品.
设二维随机变量(X,Y)的联合概率密度为求:(Ⅰ)系数A;(Ⅱ)(X,Y)的联合分布函数;(Ⅲ)边缘概率密度;(Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率。
随机试题
A.心悸不安,形寒肢冷B.心悸眩晕,面浮肢肿C.心悸不寐,多梦易醒D.心悸心烦,胸闷泛恶心悸证属心阳不振者,其主症特点是
简述水路运输的特点。
关于公证员和公证机构,以下说法不正确的是?()
某百货商场为增值税一般纳税人,经营销售家用电器、珠宝首饰、办公用品、酒及食品。2015年11月,该商场财务总监张先生向诚信税务师事务所发送了一封电子邮件,就2015年11月发生的业务问题征询税务意见,相关业务如下:(1)本月从国营农场购进免税农产品,取得
青春期所出现的“明星崇拜”现象与()有关
无期徒刑减为有期徒刑时,应当把附加剥夺政治权利的期限改为()。
嵌入式系统支持的内存块为大页时,可分成大小为(54)的子页。
TheWhiteHouseWegetupearlythismorningand【51】alongwalkafterbreakfast.Wewalkedthroughthebusinesssectionof
A、Grammarreplacement.B、Phonologyreplacement.C、Pronouncereplacement.D、Linguisticreplacement.D信息题。受访者提到:Theslowandrathe
Whatarethespeakerstalkingabout?
最新回复
(
0
)