首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关; (2)求A的特征值与特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关; (2)求A的特征值与特征向量.
admin
2015-07-10
25
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0,若
Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
(1)证明:α
1
,α
2
,…,α
n
线性无关;
(2)求A的特征值与特征向量.
选项
答案
(1)令x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0,则x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0→x
1
α
2
+x
2
α
3
+…+x
n-1
α
n
=0 x
1
α
2
+x
2
α
3
+…+x
n-1
α
n
=0→x
1
α
3
+x
2
α
4
+…+x
n-2
α
n-2
=0 … x
1
α
n
=0 因为α
n
≠0,所以x
1
=0,反推可得x
2
=…=x
n
=0,所以α
1
,α
2
,…,α
n
线性无关. (2)A(α
1
,α
2
,…,α
n
)=(α
1
,α
2
,…,α
n
)[*],令P=(α
1
,α
2
,…,α
n
),则P
-1
AP=[*]=B,则A与B相似,由|λE一B|=0→λ
1
=…=λ
n
=0,即A的特征值全为零,又r(A)=n一1,所以AX=0的基础解系只含有一个线性无关的解向量,而Aα
n
=0α
n
(α
n
≠0),所以A的全部特征向量为kα
n
(k≠0).
解析
转载请注明原文地址:https://jikaoti.com/ti/GWNRFFFM
0
考研数学三
相关试题推荐
2021年1月14日,由我国自主研发建造的全球首座十万吨级深水半潜式生产储油平台——“深海一号”能源站交付启航。“深海一号”能源站创造了3项世界级创新,下列有关说法错误的是()。
2022年1月,习近平总书记在省部级主要领导干部学习贯彻党的十九届六中全会精神专题研讨班开班式上发表重要讲话。他指出,()是一个政党、一个国家的根本性问题。
2021年5月11日,国家统计局公布的第七次全国人口普查主要数据情况显示,全国人口与2010年相比,增长()。
2021年8月23日至24日,习近平总书记在河北承德考察时指出,实践充分证明,只有()才能实现中华民族的大团结,只有()才能凝聚各民族、发展各民族、繁荣各民族。
中国特色社会主义就是把马克思主义的普遍真理同我国的具体实际结合起来,走自己的道路。提出“建设有中国特色的社会主义”这一命题的会议是
1990年4月4日,第七届全国人大第三次会议审议并通过《中华人民共和国香港特别行政区基本法》,这是“一国两制”方针由构想变为现实进程中里程碑式的事件。30年星移斗转,香港基本法经历了实践的充分检验,展现出强大生命力。实践证明,这是一部能够为“一国两制”伟
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
随机试题
A)Thepollutionoftheenvironmenthasgivenrisetomanyserioussocialproblems.B)Heleftveryearlyforfearofmissingth
直肠癌最主要的转移途径是
(三)[背景资料]建设单位就某工程项目与甲施工单位签订了施工总承包合同。经建设单位同意,甲施工单位选择了乙施工单位作为分包单位。在合同履行中,发生了如下事件:事件1:在合同约定的工程开工日前,建设单位收到甲施工单位报送的“工程开工报审
按照各类基金风险特征由高到低排序,下列排序正确的是()。
宝灵公司是一家牙膏生产企业。目前牙膏行业的销售额达到前所未有的规模,各个企业生产的不同品牌的牙膏在质量和功效等方面差别不大.价格竞争十分激烈。在上述情况下,宝灵公司的战略重点应是()。
ABC会计师事务所某审计小组正在举行异常项目审计小组讨论会,在会中就审计证据的充分性和适当性的有关问题进行了讨论。甲注册会计师提出一种观点:审计证据的质量越高,需要的审计证据数量越少,可以得出审计证据的质量和审计证据的数量是呈反比的,所以审计证据质量越低,
2014年12月4日是国家首个宪法日,据一项社会调查显示,公众对宪法的了解程度并不乐观。84.3%的受访者没有完整地读过《宪法》。其中33.2%的人完全没有读过,51.1%的人没有读完过,仅有15.7%的人完整读完。对此你怎么看?
简述严复的德智体兼备的真国民教育观。
已知极坐标下的累次积分,其中a>0为常数,则I在直角坐标系下可表示成______。
A、Theyweretoocasual.B、Theyweretoodressy.C、Theywerenotcharmingenough.D、Theywereuncomfortable.D
最新回复
(
0
)