设z=z(x,y)是由x2一6xy+10y2一2yz一z2+18=0确定的函数,求z=(x,y)的极值点和极值。

admin2018-12-19  23

问题 设z=z(x,y)是由x2一6xy+10y2一2yz一z2+18=0确定的函数,求z=(x,y)的极值点和极值。

选项

答案在方程x2一6xy+10y2一2yz—z2+18=0的两端分别对x,y求偏导数,因此有 [*] 令[*] 将上式代入x2一6xy+10y2一2yz—z2+18=0,解得 [*] (1)式对x求偏导,得 [*] (1)式对y求偏导,得 [*] (2)式对y偏导,得 [*] 所以 [*] 因此[*] 又[*],所以点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3。 类似地,由 [*] 可知[*] 又[*],故点(一9,一3)是z(x,y)的极大值点,极大值为z(一9,一3)=一3。

解析
转载请注明原文地址:https://jikaoti.com/ti/GLWRFFFM
0

最新回复(0)