首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 已知三阶矩阵A的第l行是[a,b,c],a,b,c不全为零,矩阵B=(k为常数),且AB=O.求线性方程组AX=0的通解.
[2005年] 已知三阶矩阵A的第l行是[a,b,c],a,b,c不全为零,矩阵B=(k为常数),且AB=O.求线性方程组AX=0的通解.
admin
2019-05-10
34
问题
[2005年] 已知三阶矩阵A的第l行是[a,b,c],a,b,c不全为零,矩阵B=
(k为常数),且AB=O.求线性方程组AX=0的通解.
选项
答案
为求AX=0的通解,需求其基础解系,为此需求出秩(A),这就必然要对k进行讨论,确定基础解系所含解向量的个数后,可从B的列向量中求出基础解系. 由题设AB=O可得出两种思路:一是秩(A)+秩(B)≤n;另一是B的列向量都是AX=0的解向量,据此可得到下列解法: (1)如k≠9,则秩(B)=2,因而由秩(A)+秩(B)≤3得到秩(A)≤1.显然秩(A)≥1,故秩(A)=1,于是AX=0的一个基础解系含n一秩(A)=3—1=2个解向量.由AB=0知α
1
=[1,2,3]
T
,α
2
=[3,6,k]
T
为AX=0的两个线性无关的解向量,于是其通解为k
1
α
1
+k
2
α
2
=k
1
[1,2,3]
T
+k
2
[3,6,k]
T
,k
1
,k
2
为任意两个常数. (2)如k=9,则秩(B)=1,于是秩(A)≤3一秩(B)=2.因而秩(A)=1或秩(A)=2. 当秩(A)=1时,则A的第2,3两行均与第1行成比例,故AX=0的等价方程组为ax
1
+bx
2
+cx
3
=0,不妨设c≠0,则 [*] 其一个基础解系含2个解向量,即β
1
=[1,0,-a/c]
T
,β
2
=[0,1,一b/c]
T
.为方便计,不妨取为β
1
=[c,0,一a]
T
,β
2
=[0,c,一b]
T
,其通解为l
1
β
1
+l
2
β
2
,l
1
,l
2
为任意常数. 当秩(A)=2时,则AX=0的一个基础解系只含n一秩(A)=3—2=1个解向量.此解向量γ可取B中任意一个列向量,不妨令γ=[1,2,3]
T
,则其通解为tγ,其中t为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/GLLRFFFM
0
考研数学二
相关试题推荐
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
计算定积分
设f(χ)在[0,1]上可导,且|f′(χ)|<M,证明:
设封闭曲线L的极坐标方程为r=cos3θ(),则L所围成的平面图形的面积为_______.
设,其中f(x)为连续函数,则等于()
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
1由拉格朗日中值定理,得arctan(x+1)一arctanx=,ξ∈(x,x+1).且当x→+∞时,ξ→+∞因此原式=
某闸门的性状与大小如图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h应为多少米?
(99年)求初值问题的通解.
设(1)用变限积分表示满足上述初值条件的特解y(x);(2)讨论是否存在,若存在,给出条件,若不存在,说明理由.
随机试题
简述最惠国待遇适用的例外情形。
Ifthedoctorhadnotbeenthereyesterday,______babieswouldhavedied.
50岁女性,汽车撞伤左小腿,局部肿痛畸形,反常活动,有片状皮肤擦伤出血,现场紧急处理时最重要的是
A、离心分离法B、吸咐澄清法C、沉降分离法D、膜分离法E、滤过分离法通过多孔介质将混悬液中固、液分离的方法
关于体温与发热A、细菌感染B、病毒感染C、化脓性感染或疟疾D、肺炎E、伤寒血常规检查白细胞计数高于正常值则可能是
某医院将组织全院党团员义务献血活动,急诊科年轻护士甲、乙、丙均积极报名参加。顺利完成自愿献血后的正确做法是()
塔、容器的检查封闭是完成塔、容器的全面检查并符合要求后,加装规定垫片、封闭入孔,按要求顺序和力矩拧紧连接螺栓的过程。检查封闭应经()确认。
学生原地踏步时,听到“前进!”口令,应继续踏步()再前进。
居民委员会的任务包括协助人民政府或者它的派出机关做好与居民利益有关的公共卫生、计划生育、优抚救济、()等项工作。
根据下面的图形,回答126~130题。1992-1995年间平均的销售额为多少万元?()
最新回复
(
0
)