首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=,矩阵B=(kE+A)2,求对角阵A,与B和A相似,并问k为何值时,B为正定阵.
设矩阵A=,矩阵B=(kE+A)2,求对角阵A,与B和A相似,并问k为何值时,B为正定阵.
admin
2016-09-19
53
问题
设矩阵A=
,矩阵B=(kE+A)
2
,求对角阵A,与B和A相似,并问k为何值时,B为正定阵.
选项
答案
|λE-A|=[*]=λ(λ-2)
2
,A是实对称阵,故存在正交阵Q,使得 Q
T
AQ=A
1
=[*],A=QA
1
Q
T
, B=(kE+A)
2
=(kE+QA
1
Q
T
)
2
=(Q(kE+A
1
)Q
T
)
2
=Q(kE+A
1
)
2
Q
T
=[*] 故B~A=[*] 当k≠0,k≠-2时,b的特征值全部大于0,这时b为正定阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/FzxRFFFM
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=x12+x22+x32-4x2x3的正惯性指数为().
已知二次型f(x1,x2,x3)=x12+ax22+x32+2x1x2-2ax1x3-2x2x3的正、负惯性指数都是1,则a=().
一袋中装有a个黑球,b个白球.先后两次从袋中各取一球(不放回).(1)已知第一次取出的是黑球,求第二次取出的仍是黑球的概率;(2)已知第二次取出的是黑球,求第一次取出的也是黑球的概率;(3)已知取出的两个球中有一个是黑球,求另
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
求下列隐函数的指定偏导数:
验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求一个这样的u(x,y):(1)(x+2y)dx+(2x+y)dy;(2)(6xy+2y2)dx+(3x2+4xy)dy;(3)(3x2y+xex)dx+(
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
设某产品的需求函数为Q=Q(p),其对价格P的弹性εP=2,则当需求量为10000件时,价格增加1元会使产品收益增加______元.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向节,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.β可由α1,α2,α3唯一地线性表示,并求出表示式;
随机试题
按结构的不同,锅炉包括火管锅炉、水管锅炉和()。
在各种垄断组织形式中出现较晚,但与其他形式相比更为复杂的一种高级垄断组织形式是()
三硝基甲苯侵入人体的途径为
分泌生长抑素的部位是
级差地租I和级差地租Ⅱ各有不同的表现形式,二者在本质上是不一致的,有着明显的区别。
【2013.四川泸州】“印度狼孩”的故事说明了()。
试论法律渊源的表现形式。
Attentiontodetailissomethingeveryonecanandshoulddo—especiallyinatightjobmarket.BobCrossley,ahuman-resourcesex
用户与操作系统打交道的手段称为( )
Johnalwaysfeelssluggishfirstthinginthemorning.Theunderlinedpartmeans______.(2014-70)
最新回复
(
0
)