首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β是三维单位正交列向量,令A=αβT+βαT.证明: (1) |A|=0; (2)α+β,α一β是A的特征向量; (3)A相似于对角阵,并写出该对角阵.
设α,β是三维单位正交列向量,令A=αβT+βαT.证明: (1) |A|=0; (2)α+β,α一β是A的特征向量; (3)A相似于对角阵,并写出该对角阵.
admin
2019-07-10
102
问题
设α,β是三维单位正交列向量,令A=αβ
T
+βα
T
.证明:
(1) |A|=0;
(2)α+β,α一β是A的特征向量;
(3)A相似于对角阵,并写出该对角阵.
选项
答案
(1)A为三阶矩阵, r(A)=r(αβ
T
+βα
T
)≤r(αβ
T
)+r(βα
T
)≤r(α)+r(β)≤2<3, 故|A|=0. (2)因α,β为三维单位正交向量,故 α
T
α=1,β
T
β=1,βα
T
=βα
T
=0. 当然α,β线性无关,又α,β为单位向量,α+β≠0,故 A(α+β)=(αβ
T
+βα
T
)(α+β)=αβ
T
α+αβ
T
β+βα
T
α+βα
T
β =α.0+α.1+β.1+β.0=α+β, 即a+β为A的对应于特征值λ
1
=1的特征向量.同法可求 A(α一β)=(αβ
T
+βα
T
)(α一β)=αβ
T
a一αβ
T
β+βα
T
α一βα
T
β =α.0一α.1+β.1一β.0=一(α一β), 故α一β为A的对应于特征值λ
2
=一1的特征向量。 设另一特征值为λ
3
,由|A|=0得到|A|=λ
1
λ
2
λ
3
=0,故λ
3
=0. (3)因A有3个不同特征值,故A~A=diag(0,1,一1),即其相似对角矩阵为 A=diag(0,1,一1) (diag为对角矩阵的英文简写).
解析
(1)利用r(B+C)≤r(B)+r(C),r(BC)≤min{r(B),r(C)},证明r(A)<3;
(2)利用特征向量的定义,即利用A(α+β)=k(α+β),A(α一β)=C(a一β)证之;
(3)证明A有3个不同的特征值即可。
转载请注明原文地址:https://jikaoti.com/ti/FxnRFFFM
0
考研数学三
相关试题推荐
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
设A,B为n阶矩阵,则下列结论正确的是().
设随机变量X方差为2,则根据切比雪夫不等式有估计P{|X—E(X)|≥2)≤____________.
设总体X的分布律为P(X=k)=(1-p)k-1p(k=1,2,…),其中p是未知参数,X1,X2,…,Xn为来自总体的简单随机样本,求参数p的矩估计量和极大似然估计量.
设随机变量X的分布律为则Y=X2+2的分布律为____________.
设则
设α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中r(B)=2.求方程组(Ⅰ)的基础解系;
设α=(1,0,-1)T,矩阵A=ααT,n为正整数,a为常数,则|aE-An|=_______.
设n维实向量α=(a1,a2,…,an)T≠0,方阵A=ααT.证明:对于正整数m,存在常数t,使Am=tm-1A,并求出t;
若[x]表示不超过x的最大整数,则积分∫04[x]dx的值为()
随机试题
求下列函数的极限:
A.国(食)药监械(准)字XXXX3第x4xx5xxxx6号B.国(食)药监械(进)字XXXX3第x4xx5xxxx6号C.省(食)药监械(准)字XXXX3第x4xx5xxxx6号
竣工验收的工作程序不包括()。
《公路工程国内招标文件范本》规定投标人必须通过()并取得投标资格。
根据企业破产法律制度的规定,人民法院裁定受理破产申请的,应当同时指定管理人。下列各项中,可以担任管理人的机构有()。
微型计算机中,普遍使用的字符编码是______。
石窟艺术是一种宗教文化,取材于佛教故事,兴于魏晋,盛于隋唐。我国规模最大的石窟是()。
11,22,33,55,()。
牙种植体(dentalimplant)
Manypeoplewronglybelievethatwhenpeoplereacholdage,theirfamiliesplacetheminnursinghomes.Theyareleftinthe【C1
最新回复
(
0
)