首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个线性方程组: 其中向量b=(b1,b2,…,bm)T≠0.证明:方程组(Ⅰ)有解的充分必要条件,是(Ⅱ)的每一解y=(y1,y2,…,ym)T都满足方程b1y1+b2y2+…+bmym=0.
设有两个线性方程组: 其中向量b=(b1,b2,…,bm)T≠0.证明:方程组(Ⅰ)有解的充分必要条件,是(Ⅱ)的每一解y=(y1,y2,…,ym)T都满足方程b1y1+b2y2+…+bmym=0.
admin
2018-08-03
37
问题
设有两个线性方程组:
其中向量b=(b
1
,b
2
,…,b
m
)
T
≠0.证明:方程组(Ⅰ)有解的充分必要条件,是(Ⅱ)的每一解y=(y
1
,y
2
,…,y
m
)
T
都满足方程b
1
y
1
+b
2
y
2
+…+b
m
y
m
=0.
选项
答案
记A=(a
ij
)
m×n
,x=(x
1
,x
2
,…,x
n
)
T
,y=(y
1
,y
2
,…,y
n
)
T
,则方程组(Ⅰ)的矩阵形式为Ax=b,方程组(Ⅱ)的矩阵形式为A
T
y=0,方程[*]b
i
y
i
=0的矩阵形式为b
T
y=0.必要性:设方程组(Ⅰ)有解x,y为(Ⅱ)的任一解,则b
T
y=(Ax)
T
y=x
T
(A
T
y)=x
T
O=0,故(Ⅱ)的任一解y都满足方程b
T
y=0.充分性:在充分性条件下,两个齐次线性方程组[*]=0与A
T
y=0同解,故其系数矩阵的秩相同,从而系数矩阵的转置矩阵的秩也相同,即r(A)=r(A┊b).由有解判定定理知方程组(Ⅰ)有解.
解析
转载请注明原文地址:https://jikaoti.com/ti/FV2RFFFM
0
考研数学一
相关试题推荐
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设A是正交矩阵,且|A|<0.证明:|E+A|=0.
设函数f(x,y)可微,,求f(x,y).
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(I)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0→A(β1,β2,…,βn)=O→ABT=O→BAT=O.→α1,α2,…,αn为BY=O的一组解,而
设A=有三个线性无关的特征向量,则a=___________.
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=___________.
求幂级数的和函数.
A,B,C三个随机事件必相互独立,如果它们满足条件
设随机变量X服从标准正态分布N(0,1),在X=x(一∞<x<+∞)的条件下,随机变量Y服从正态分布N(x,1).求在Y=y条件下关于X的条件概率密度.
随机试题
合理的组织结构应具备的主要条件有()。
一氧化碳(CO)中毒时,血液中形成大量的碳氧血红蛋白。关于碳氧血红蛋白(COHb)的说法,正确的是
由于成为交易对象的土地具有(),各个地块都有独特的价格,因此其替代性有限。
某体育场设有照明设施和管理用房,其场地灯光布置采用四塔照明方式,其中灯塔位置如下图所示。灯塔距场地中心点水平距离为103m,场地照明灯具采用金属卤化物灯,请回答下列问题。该体育场灯塔最下排的投光灯至体育场地的垂直距离最少不宜小于下列哪个数值?(
施工质量控制的总体目标包括( )。
银行业从业人员的下列行为中,不符合“熟知业务”的有关规定的是()。
下列各项中,属于滚动预算优点的有()。
某教材在选修模块中设置了“20世纪中国文学中的乡土景观”专题。下列作品适合选人的是()。
以下关于视图的描述中,错误的是
Storytellingisanancientandhonoredart.Storytellersentertainedduringthelongdarkhoursbeforesleeparrivedafterthe
最新回复
(
0
)