首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
admin
2018-08-12
40
问题
已知A是三阶矩阵,α
i
(i=1,2,3)是三维非零列向量,令α=α
1
+α
2
+α
3
。若Aα
i
=iα
i
(i=1,2,3),证明:α,Aα,A
2
α线性无关。
选项
答案
由Aα
i
=iα
i
(i=1,2,3),且α
i
(i=1,2,3)非零可知,α
1
,α
2
,α
3
是矩阵A的属于不同特征值的特征向量,故α
1
,α
2
,α
3
线性无关。又Aα=α
1
+2α
2
+3α
3
,A
2
α=α
1
+4α
2
+9α
3
, 所以 [*] 而矩阵P是范德蒙德行列式,故|P|=2≠0,所以α,Aα,A
2
α线性无关。
解析
转载请注明原文地址:https://jikaoti.com/ti/FOWRFFFM
0
考研数学二
相关试题推荐
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
φ(x)=∫sinxcos2xln(1+t2)dt,求φ’(x).
求微分方程y"+4y’+4y=eax的通解.
令f(x)=x-[x],求极限
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x-3e2x为特解,求该微分方程.
计算定积分
将函数arctanx一x展开成x的幂级数.
随机试题
试联系你所熟悉的语言,谈谈什么是音高、音强、音长、音色,并谈谈它们在语音中的表现或作用。
下列哪项不符合子宫内膜异位症
患者,男,50岁。突发昏迷2小时。既往有高血压病史。对于该患者首选影像学检查方法为
以下哪项不是肺癌所致阻塞性肺炎的特点()
关于价格承诺,下列表述正确的是()
企业核算应缴纳的营业税,应贷记的科目是()。
用于企业扩建固定资产的贷款是()。
乙公司在与甲公司交易中获得300万元的汇票一张,付款人为丙公司。乙公司请求承兑时,丙公司在汇票上签注:“承兑,甲公司款到后支付。”根据票据法律制度的规定,下列关于丙公司付款责任的表述中,正确的是()。
西甲公司与英超公司签订有偿委托合同,由西甲公司委托英超公司采购200台空调,并预先支付购买空调的费用30万元。英超公司经考察发现A公司有一批物美价廉的空调,遂以自己的名义与A公司签订了一份空调购买合同,双方在合同中约定:英超公司从A公司购进200台空调,总
源起于美国次贷危机的此次全球性金融风暴,固然起于经济领域,但是,一石激起千层浪,如果,不是人性中超乎现实允许范围的物质欲求过度膨胀,原本出于虚拟经济的一个颇有想象力的创意,也不会滚雪球般失控,以至弥漫成灾。那些从小优秀得无以复加的华尔街金融,精英们,卖力煽
最新回复
(
0
)