A、B、C、D、E是5个不同的整数,两两相加的和共有8个不同的数值,分别是17、25、28、31、34、39、42、45,则这5个数中能被6整除的有几个?

admin2011-01-29  35

问题 A、B、C、D、E是5个不同的整数,两两相加的和共有8个不同的数值,分别是17、25、28、31、34、39、42、45,则这5个数中能被6整除的有几个?

选项 A、0
B、1
C、2
D、3

答案C

解析 设A<B<C<D<E,则必有A+B=17,A+C=25,C+E=42,D+E=45。两两相加,本应有个和值(计入和值相等的情况),而只得到8个不同的值。将10个和值加总,必为4的倍数;将8个和值加总,为261(除以4余1)。易知,重复的2个和值必在中间4个数中,即为28、31、34、39中的两个数,且这两数之和除以4的余数为3,易知这两个数为28、39或者28、31。由28必为重复值,可知B+C=A+D=28,结合前面所列方程,可求得A=7,B=10,C=18,D=21,E=24。
转载请注明原文地址:https://jikaoti.com/ti/ExQuFFFM
0

相关试题推荐
最新回复(0)