A是n阶矩阵,且A3=0,则( ).

admin2022-04-08  38

问题 A是n阶矩阵,且A3=0,则(    ).

选项 A、A不可逆,E-A也不可逆
B、A可逆,E+A也可逆
C、A2-A+E与A2+A+E均可逆
D、A不可逆,且A2必为0

答案C

解析 由行列式性质|A|3=|A3|=0,可知A必不可逆,但从
  (E-A)(E+A+A2)=E-A3=E,(E+A)(E-A+A2)=E+A3=E,知
  E-A,E+A,E+A+A2,E-A+A2均可逆.
  当A3=O时,A2是否为0是不能确定的,
例如:A1=,有A13=0,
  但A12≠0,A23=0,且A22=0,故选(C).
转载请注明原文地址:https://jikaoti.com/ti/EXhRFFFM
0

随机试题
最新回复(0)