首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知ξ1=(1,1,0,0)T,ξ2=(1,0,1,0)T,ξ3=(1,0,0,1)T是齐次线性方程组(I)的基础解系,η1=(0,0,1,1)T,η2=(0,1,0,1)T是齐次线性方程组(Ⅱ)的基础解系,求方程组(I)与(Ⅱ)的公共解.
已知ξ1=(1,1,0,0)T,ξ2=(1,0,1,0)T,ξ3=(1,0,0,1)T是齐次线性方程组(I)的基础解系,η1=(0,0,1,1)T,η2=(0,1,0,1)T是齐次线性方程组(Ⅱ)的基础解系,求方程组(I)与(Ⅱ)的公共解.
admin
2017-07-26
34
问题
已知ξ
1
=(1,1,0,0)
T
,ξ
2
=(1,0,1,0)
T
,ξ
3
=(1,0,0,1)
T
是齐次线性方程组(I)的基础解系,η
1
=(0,0,1,1)
T
,η
2
=(0,1,0,1)
T
是齐次线性方程组(Ⅱ)的基础解系,求方程组(I)与(Ⅱ)的公共解.
选项
答案
方程组(I)与(Ⅱ)的通解分别是 k
1
α
1
+k
2
α
2
+k
3
α
3
与l
1
η
1
+l
2
η
2
. 若有不全为零的常数a
1
,a
2
,a
3
,b
1
,b
2
,使 a
1
ξ
1
+a
2
ξ
2
+a
3
ξ
3
=b
1
η
1
+b
2
η
2
, 则b
1
η
1
+b
2
η
2
就是方程组(I)与(II)的非零公共解, 对于a
1
ξ
1
+a
2
ξ
2
+a
3
ξ
3
一b
1
η
1
+b
2
η
2
=0,对系数矩阵作初等行变换,有 [*] 通解为t(1,一1,0,一1,1)
T
,即 a
1
=t, a
2
=一t, a
3
=0, b
1
=一t, b
2
=t. 所以方程组(I)与(Ⅱ)的公共解为 t(ξ
1
一ξ
2
)=(0,t,一t,0)
T
.
解析
转载请注明原文地址:https://jikaoti.com/ti/DlSRFFFM
0
考研数学三
相关试题推荐
设离散型二维随机变量(X,Y)的取值为(xi,yi)(i,j=1,2),且试求:二维随机变量(X,Y)的联合概率分布;
设A是n阶证定阵,E是n阶单位阵,证明A+E的行列式大于1.正交矩阼Q,使QTAQ为对角矩阵.
求曲线x3+y3-3xy=0在点处的切线方程和法线方程.
设f(x)在x=0的某邻域内连续,,则f(x)在x=0处
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
设f(x)=求f’(x)并讨论f’(x)在x=0处的连续性.
设p(x)在[a,b]上非负连续,f(x)与g(x)在a,b]上连续且有相同的单调性,其中D={(x,y)|a≤x≤b,a≤y≤b),比较的大小,并说明理由.
铁路一编组站随机地编组发往三个不同地区E1,E2和E3的各2节、3节和4节车皮,求发往同一地区的车皮恰好相邻的概率p.
设f(x)在(一a,a)内连续,在x=0处可导,且f’(0)≠0.(1)求证:对任给的0<x<a,存在0<θ<1,使∫0xf(t)dt+∫0—xf(t)dt=x[f(θx)一f(一θx)].(2)求.
设某地区一年内发生有感地震的次数X和无感地震次数Y分别服从泊松分布P(λ1)和P(λ2),λ1,λ2>0,且X与Y相互独立.(1)求一年内共发生n(n≥0)次地震的概率;(2)求在一年内发生了n次地震的条件下,有感次数X的条件概率分布.
随机试题
药物的各种给药方式,使药物起效由快到慢的顺序是
病毒性心肌炎病初风热犯心证的治法为
合同价与投资估算、概算、预算的对比分析属于建设项目管理信息系统( )子系统的基本功能。
读“2005年我国东部沿海某市各圈层间人口净迁移模式图”,完成问题。由图可知该市()。
马克思主义所持的教育起源说是教育的()。
2016年6月25日晚,我国载人航天工程为发射货运飞船而全新研制的长征七号运载火箭在()发射成功。
(2012年真题)下列关于社会主义法治理念的理解,正确的是
信息资源管理是对包括()等在内的信息资源的管理。
设有如下程序:importjava.util.*;publicclassSun{publicstaticvoidmain(Stringargs[]){intscore;
WhendidBenfirstbecomeinterestedinMongolia?
最新回复
(
0
)