首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶实对称矩阵,满足A3=2A2+5A一6E,且kE+A是正定阵,则k的取值范围是__________。
设A是三阶实对称矩阵,满足A3=2A2+5A一6E,且kE+A是正定阵,则k的取值范围是__________。
admin
2019-01-23
34
问题
设A是三阶实对称矩阵,满足A
3
=2A
2
+5A一6E,且kE+A是正定阵,则k的取值范围是__________。
选项
答案
k>2
解析
根据题设条件,则有A
3
一2A
2
一5A+6E=O。设A有特征值λ,则λ满足条件λ
3
一2λ
2
一5λ+6=0,将其因式分解可得
λ
3
一2λ
2
一5λ+6=(λ一1)(λ+2)(λ一3)=0,
因此可知矩阵A的特征值分别为l,一2,3,故kE+A的特征值分别为k+1,k一2,k+3,且当k>2时,
kE+A的特征值均为正数,故k>2。
转载请注明原文地址:https://jikaoti.com/ti/DgBRFFFM
0
考研数学三
相关试题推荐
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,一1,a,5)T,α3=(2,a,一3,一5)T,α4=(一1,一1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
设A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT—E且B的行向量是齐次方程组Ax=0的解,P是m阶可逆矩阵,证明:矩阵PB的行向量是Ax=0的基础解系.
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值,证明:A与B有相同的特征向量.B相似于对角矩阵.
设随机变量X1和X2各只有一1,0,1等三个可能值,且满足条件P{Xi=一1}=P{Xi=1}=(i=1,2).试在下列条件下分别求X1和X2的联合分布.(1)P{X1X2=0}=1;(2)P{X1+X2=0}=
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
设A=.(1)若矩阵A正定,求a的取值范围.(2)若a是使A正定的正整数,求正交变换化二次型xTAx为标准形,并写出所用坐标变换.
设f(x1,x2)=,则二次型的对应矩阵是________。
设α1=,α2=,α3=,则α1,α2,α3经过施密特正交规范化后的向量组为________.
已知三元二次型xTAx经正交变换化为2y12—y22—y32,又知A*α=α,其中α=(1,1,一1)T,求此二次型的表达式.
随机试题
A、griefB、believeC、relieveD、sufficientD画线部分读[e],其他选项的画线部分读[i:]。
导致肛裂的病因是
小儿体格发育的两个高峰期是
关于全国天文大地网说法错误的是()。
祥聚公的创始人是孙学仁,它是满汉饽饽铺。()
有人说“同行是冤家”、“教会了徒弟,饿死了师傅”、“文人相轻”,这些错误观念与()相违背。
他的新著可以归人“灿烂的书”之列。他用自己的性情和心智,______先贤的思想,不仅______出文化的基本框架,还______了文化的核心问题,对文化的几个比较复杂的问题,有几番精彩阐述。填入画横线部分最恰当的一项是:
最能表达或说明利率和期限关系的收益率曲线形状的理论是()。
关于this指针的说明不正确的是()。
A、Bothtimedepositandcurrentdeposithavethesameinterestrate.B、Theinterestrateishighforcurrentdeposit.C、Theinte
最新回复
(
0
)