首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2, 记 证明二次型f对应的矩阵为2ααT+ββT;
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2, 记 证明二次型f对应的矩阵为2ααT+ββT;
admin
2019-01-23
38
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,
记
证明二次型f对应的矩阵为2αα
T
+ββ
T
;
选项
答案
f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)。+(b
1
x
1
+b
2
x
2
+b
3
x
3
)。 =2(x
1
,x
2
,x
3
)[*](a
1
,a
2
,a
3
)[*]+(x
1
,x
2
,x
3
) [*](b
1
,b
2
,b
3
)[*] =(x
1
,x
2
,x
3
)(2αα
T
)[*]+(x
1
,x
2
,x
3
)(ββ
T
)[*] =(x
1
,x
2
,x
3
)(2αα
T
+ββ
T
)[*] 所以二次型f对应的矩阵为2αα
T
+ββ
T
。
解析
转载请注明原文地址:https://jikaoti.com/ti/CgBRFFFM
0
考研数学三
相关试题推荐
已知A=[α1,α2,α3,α4]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=[α3,α2,α1,β一α4],求方程组Bx=α1—α2的通解.
设A是n阶实对称矩阵,证明:A可逆的充要条件是存在n阶实矩阵B,使得AB+BTA是正定阵.
已知非齐次线性方程组有3个线性无关的解.(1)证明:方程组的系数矩阵A的秩r(A)=2.(2)求a,b的值及方程组的通解.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)证明:Aα1,Aα2,Aα3线性无关.(2)求|A|.
设随机变量X与Y相互独立,且P(X=1)=P(X=一1)=,令Z=XY,证明X,Y,Z两两独立,但不相互独立.
设随机变量X1,X2,X3相互独立且都服从参数为p的0一1分布,已知矩阵.试求:(1)参数p的值,(2)随机变量Y=的分布律.
设X1,X2,X3,X4,为来自总体N(1,σ2)(σ>0)的简单随机样本,则统计量[X1-X2]/丨X3+X4-2丨的分布为
已知随机变量Xn(n=1,2,…)相互独立且都在(-1,1)上服从均匀分布,根据独立同分布中心极限定理有=()(结果用标准正态分布函数φ(x)表示)
化三重积分为三次积分,其中积分区域Ω分别是:(1)由平面z=0,z=y及柱面所围成的闭区域;(2)由曲面z=x2+2y2及z=2-x2所围成的闭区域;(3)由曲面z=xy,x2+y2=1,z=0所围成的位于第一卦限的闭区域;(4)由双曲抛物面z=x
设f(x)在x0的邻域内三阶连续可导,且f'(x0)=f"(x0)=0,f"'(x0)>0,则下列结论正确的是().
随机试题
积证的特征是()(2009年第171题)
电阻串联电路中,能够成立的关系是()。
土地使用权出让合同约定的使用年限届满,土地使用者需要继续使用土地的,应当不迟于届满前_______申请续期()
在一个心动周期中,房室瓣和半月瓣都处于关闭状态的时期是_______和_______。
患者孕前经行前后头痛,现孕后眩晕,烦躁易怒,头目胀痛眩晕,腰膝酸软,舌红,脉弦。证属
拔牙时,消毒口内黏膜及消毒麻醉药安碚所使用的碘酊浓度是
十二经别的循行分布特点,按先后顺序排列是()
A.OQB.PQC.PV D.IQE.SIP
均质细杆AB重力为P、长2L,A端铰支,B端用绳系住,处于水平位置,如图4-73所示。当B端绳突然剪断瞬时AB杆的角加速度大小为()。
在设计准备阶段监理的工作内容中,不应包括()。
最新回复
(
0
)