首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
admin
2021-11-09
36
问题
A是三阶矩阵,λ
1
,λ
2
,λ
3
是三个不同的特征值,ξ
1
,ξ
2
,ξ
3
是相应的特征向量.证明:向量组A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关的充要条件是A是可逆矩阵.
选项
答案
A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关←→λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
线性无关 ←→[λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
]=[ξ
1
,ξ
2
,ξ
3
][*]秩为3, 因为ξ
1
,ξ
2
,ξ
3
线性无关,[*]=2λ
1
λ
2
λ
3
≠0←→|A|=λ
1
λ
2
λ
3
≠0,A是可逆阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/CClRFFFM
0
考研数学二
相关试题推荐
设矩阵试判断A和B是否相似,若相似,求出可逆矩阵X,使得X-1AX=B·
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T.令C=(α1,α2,α3,α4,b),求Cx=b的通解.
微分方程xyˊ=y(lnxy-1)的通解是.
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为(-1,1,0,2)T+k(1,-l,2,0)T,则求α1,α2,α3,α4,β的一个极大无关组.
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a﹤b=f(b).证明:存在εi∈(a,b)(i=1,2,...,n),使得.
设f(x)在[a,b]上连续,在(a,,b)内二阶连续可导,证明:存在∈(a,b),使得.
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在c∈(0,1),使得f(c)=1-2c
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0﹤θ﹤1).证明:.
设求f’(x).
设求f’(x)并讨论f’(x)在x=0处的连续性.
随机试题
23岁男性患者,2周前突起全身水肿、尿量减少、血尿,近5天来尿量逐渐减少,伴脸色苍白,查:血压180/100mmHg,尿蛋白(+++),红细胞(+++),白细胞0~3/HP,颗粒管型0~2/HP,血肌酐440μmol/L,血红蛋白90g/L。该患者最可
男性,45岁,十二指肠溃疡大出血6小时内输血900ml。脉搏110次/分。血压70/50mmHg,宜进行
一个良好的嵌体蜡型应该是
工程承包单位在购置生产设备时,应向( )申报,经过设备订货清单按设计要求逐一审核后,方可加工订货。
会计主体与法律主体(法人)不是同一概念,一般来说,会计主体必然是法律主体,但法律主体并不都是会计主体。()
下列关于到期收益率影响因素,说法错误的是()。
从世界经济的发展历程来看,如果一国或地区的经济保持着稳定的增长速度,大多数商品和服务的价格必然随之上涨,只要这种涨幅始终在一个较小的区间内就不会对经济造成负面影响。由此可以推出,在一定时期内()。
法律关系主体能够通过自己的行为实际取得权利和履行义务的能力,称为()。(2012年真题)
下列关于运算符重载的叙述中,正确的是
Ilaouvertlabo?tedeconserve_____uncouteau.
最新回复
(
0
)