首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Which Low Carbon Technology Is Now a Reality? A)With fossil fuels expected to supply over 70% of the world’s energy needs by 204
Which Low Carbon Technology Is Now a Reality? A)With fossil fuels expected to supply over 70% of the world’s energy needs by 204
admin
2016-09-08
43
问题
Which Low Carbon Technology Is Now a Reality?
A)With fossil fuels expected to supply over 70% of the world’s energy needs by 2040, we face some urgent questions: where should efforts be focused in reducing greenhouse gas emissions? Which technologies hold the most promise? There are a range of low-carbon solutions and given the challenge, we will need them all. We hear a lot about the advances being made by refreshable sources of energy such as solar, wind and hydro-electricity and these are certainly valuable technologies in combating climate change. But how can we really make a major impact in reducing carbon emissions from large power plants and industrial facilities? Enter carbon capture and storage—or CCS—a technology that captures CO
2
from fossil fuel production and permanently stores it underground.
B)The aim is to prevent the release of large quantities of CO
2
into the atmosphere(from fossil fuel use in power generation and other industries). It is a potential means of relieving the contribution of fossil fuel emissions to global warming and ocean acidification(酸化). Although CO
2
has been injected into geological formations for several decades for various purposes, including enhanced oil recovery, the long term storage of CO
2
is a relatively new concept. The first commercial example was Weyburn in 2000. CCS can also be used to describe the scrubbing(涤气)of CO
2
from environmental air as a climate engineering technique.
C)In November 2014 the Global CCS Institute released its flagship(核心的)publication—the annual Global Status of CCS report. This comprehensive annual update is the prominent source of information on the development of CCS around the world. A lot of work went into updating information in the report, in cooperation with the CCS industry, as there had been quite significant changes to the CCS landscape in the preceding 12 months. This included the launch of a large-scale CCS project in the power sector and the beginning of construction of the world’s first large-scale CCS project in the iron and steel sector.
D)Large-scale CCS is now a reality in the power sector with the October 2014 launch of the Boundary Dam Integrated Carbon Capture and Storage Demonstration Project in Saskatchewan, Canada. Boundary Dam is the first commercial CCS plant in the power sector, removing 90 per cent of the CO
2
produced by electricity generation from lignite(褐煤)coal at Production Unit No. 3 of the SaskPower facility. The captured CO
2
is primarily used for enhanced oil recovery(EOR)at the nearby Weyburn oil field, although amounts are also to be stored in deep geological formations at the Aquistore site. The success of the Boundary Dam project and the progression of additional projects through planning and construction, indicates that CCS technologies for application in the power sector are "market ready".
E)The next 18 -24 months will see CCS be applied across a range of industries and storage types. A further two large-scale CCS power projects are in construction in the US—the Kemper County Energy Facility in Mississippi and the Petra Nova Carbon Capture Project in Texas. Both projects are expected to be operational in 2016. Also in the US, the Illinois Industrial CCS project planned for launch later this year will capture CO
2
from the Archer Daniels Midland corn-to-ethanol(乙醇)plant in Decatur, Illinois for storage in an onshore deep saline formation. The Abu Dhabi CCS project in the United Arab Emirates is under construction and from 2016 will provide the world’s first large-scale demonstration of CO
2
capture from iron and steel production.
F)In addition to the 22 large-scale CCS projects currently in operation or construction around the world, 14 projects are in advanced stages of planning, many of which are likely to be in a position to make a final investment decision over the coming year. Together this group of projects covers a range of applications for CCS and could extend to around ten in the number of large-scale CCS projects operating in the power sector by the end of the decade. Their progression to operation would add experience in the dedicated geological storage of CO
2
and see operational large-scale CCS activity extend to China for the first time.
G)2014 saw commercial application in the power sector become a reality and we can look forward to a further expansion across a diverse range of industries in the coming years. The Global CCS Institute continues to cover developments in CCS with up-to-date information, expert insights, workshops, media releases and online seminars. We struggle to make CCS industry information easily accessible and encourage you to engage with us via our website and regular publications.
H)For detailed information on large-scale CCS projects please visit our online Projects page, which you can browse or search for projects based on stage, region, industry or capture, transport and storage type. For the first time the Institute’s website contains project descriptions for around 40 lesser scale "remarkable" CCS projects, of which four Japanese "remarkable" CCS projects were the key focus of a chapter in the Global Status of CCS report. For ongoing expert information visit our Insights page, which is regularly updated with articles from experts in carbon capture and storage, public engagement, legal issues and policy developments.
I)To join in the discussion you can attend meetings and workshops around the world, and participate in online seminars where you will have the opportunity to listen to and ask questions of a range of experts. Visit our Events page to see upcoming meetings, conferences, workshops and seminars. Finally, for a range of up-to-date news and more detailed information, visit our news and publications sections. We look forward to covering this exciting period in the development of CCS and providing you with the latest information and important issues for the sector.
The purpose of CCS technology is to avoid releasing a large amount of CO
2
into the atmosphere.
选项
答案
B
解析
转载请注明原文地址:https://jikaoti.com/ti/CBpFFFFM
0
大学英语四级
相关试题推荐
Manypeopleoftenenjoyeatingout【C1】______beforeorafteravisittothetheatre.However,mostofuswouldratherkeepthetw
A、Shewasusingthewrongpaint.B、Shehasrunoutofpaintbrushes.C、Shedoesn’tfeellikegoingtoclass.D、Shehasdroppedou
A、Thehomeworkwasveryeasy.B、Themanshouldgotoclass.C、Themanshouldsitinthebackoftheclassroom.D、She’sfurtherb
TheArtofFriendshipA)OneeveningafewyearsagoIfoundmyselfinananxiety.Nothingwasreallywrong—myfamilyandIwer
A、Enjoyfamilyhappiness.B、Switchtoanotherfield.C、Starthisownbusiness.D、Buildahouseofhisown.A细节题。短文开头提到,thecarpe
A、Almosttwomonths.B、Morethanonemonth.C、Nearlytwoweeks.D、Overthreeweeks.C细节题。短文开头提到,每年的2月21日到3月4日期间,威尼斯的街上都会举办狂欢节(ca
A、Tobuyanewmap.B、Toaskanotherperson.C、Togowithher.D、Tofindthelibraryhimself.C
A、Heoftentellslies.B、Hehasmadeabigmistake.C、Hewillsaynothingtotheboss.D、Heisagoodperson.A
A、France.B、TheCaribbean.C、England.D、Canada.B
ThingsYouCan’tSayinCanadaA)Attackingoursacredcows(thingsorpeoplethatcannotbecriticized)mayturnyouintoone
随机试题
影响个人价值观的因素有()。
A.有肉芽肿形成B.有干酪样坏死C.有中性粒细胞浸润D.有成纤维细胞梅毒的特点是
干咳少痰或痰黏难咳,口唇鼻咽干燥,便干溲少,此属
甲欠乙400万,甲将自己的房屋无偿为戊向已借款的合同提供担保,该担保符合形式要件。甲又将该房屋以极低价格转让给了丙,该买卖也符合形式要件。后因甲无力清偿乙的债权,戊无力清偿其债权人己的债权,己欲行使对甲之房屋的抵押权。根据上述案例,回答下列问题:
R公司中标一工业厂房及设备安装工程,合同工期20个月。按照招标文件中合同条款的规定,工期每提前一个月奖励5万元,每滞后一个月罚款10万元。在开工之前,须向工程师提交详细的施工组织设计和网络图,R公司对各工序的划分和各工序的逻辑关系如表1所示。
开发企业内部的培训资源,其优点包括()。
(2017·吉林)观察是人的一种有目的、有计划、持久的知觉活动,是知觉的高级形式。()
宜宾是四川最大的()聚居地。
意志的活动过程会体现以下两大定律。其中,意志强度边际效应定律是指意志的强度随着自身行为的活动规模的增长而下降;意志强度时间衰减定律是指意志的强度随着自身行为的持续时间的增长而呈现负指数下降。 根据上述定义,下列选项最能体现意志强度时间衰减定律的是:
设f(u,v)具有连续偏导数,且满足f’u(u,v)+f’v(u,v)=uv求y(x)=e2x(x,x)所满足的一阶微分方程,并求其通解.
最新回复
(
0
)