首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组(I)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i=1,2,…,s)均可由向量组(I)α1,α2,…,αs线性表出,则必有 ( )
向量组(I)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i=1,2,…,s)均可由向量组(I)α1,α2,…,αs线性表出,则必有 ( )
admin
2019-05-17
21
问题
向量组(I)α
1
,α
2
,…,α
s
,其秩为r
1
,向量组(Ⅱ)β
1
,β
2
,…,β
s
,其秩为r
2
,且β
i
(i=1,2,…,s)均可由向量组(I)α
1
,α
2
,…,α
s
线性表出,则必有 ( )
选项
A、α
1
+β
1
,α
2
+β
2
,…,α
s
+β
s
的秩为r
1
+r
2
B、α
1
-β
1
,α
2
一β
2
,…,α
s
一β
s
的秩为r
1
一r
2
C、α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
的秩为r
1
+r
2
D、α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
的秩为r
1
答案
D
解析
设α
1
,α
2
,…,α
s
的极大线性无关组为α
1
,α
2
,…,α
r
1
,则α
j
(j=1,2,…,s)均可由α
1
,α
2
,…,α
r
1
线性表出,又β
i
(i=1,2,…,s)可由(I)表出,即可由α
1
,α
2
,…,α
r
1
线性表出,即α
1
,α
2
,…,α
r
1
也是向量组α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
的极大线性无关组,故r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
)=r
1
,其余选项可用反例否定.
转载请注明原文地址:https://jikaoti.com/ti/C2LRFFFM
0
考研数学二
相关试题推荐
设3阶方阵A按列分块为A=[α1α2α3],已知秩(A)=3,则3阶方阵B=[α1+2α2+α32α1+(2一a)α2+3α33α1+3α2]的秩=________.
设z=yf(x2-y2),其中f(u)可微,则=________.
设f(x)二阶可导,且f(0)=0,令g(x)=(Ⅰ)确定a的取值,使得g(x)为连续函数;(Ⅱ)求g’(x)并讨论函数g’(x)的连续性.
求曲线y=3-|χ2-1|与χ轴围成的封闭区域绕直线y=3旋转所得的旋转体的
设f(x)有二阶连续导数,且f(0)=0,f’(0)=一1,已知曲线积分∫L[xe2x-6f(x)]sinydx一[5f(x)-f’(x)]cosydy与积分路径无关,求f(x).
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
已知y1(x)和y2(x)是方程y’+p(x)y=0的两个不同的特解,则方程的通解为()
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示.②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也
随机试题
巡视工作人员应当按照规定进行()交流。
胃肠道手术,手术前禁食的主要目的是()
迷走神经为
秦艽碱甲升高血糖的作用机制是
总账系统日常账务处理的内容主要包括()。
约翰是一家公司的职员,在业余时间创办了Kitty玩具公司。Kitty玩具公司的雏形是约翰在1980年开张了的乔记精品商店。后来的生意越做越大,约翰终于辞去工作全心投入公司,并把店名正式定名为Kitty玩具公司。Kitty玩具公司的生意蒸蒸日上,目前已有7家
The82-year-oldFrancesWoodenteredtheNazareneUniversitytwoyearsago.Atthattime,herhusbandof59yearsdied,whichle
Directions:Inthispart,youaretowritewithin30minutesacompositionofnolessthan150wordsonthefollowingtopic.Ple
收复失地运动
Formostkindsofactivities,alargegroupofpeoplecanaccomplishmoreandhavemorefunthanonepersonlonely.Forexample,
最新回复
(
0
)