首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
admin
2018-11-21
14
问题
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证:
[∫
0
1
f(x)dx]
2
>∫
0
1
f
3
(x)dx.
选项
答案
即证[∫
0
1
f(x)dx]
2
一∫
0
1
f
3
(x)dx>0.考察F(x)=[∫
0
x
f(t)dt]
2
一∫
0
x
f
3
(t)dt, 令F(x)=[∫
0
x
f(t)dt]
2
一∫
0
x
f
3
(t)dt,易知F(x)在[0,1]可导,且 F(0)=0,F’(x)=f(x)[2∫
0
x
f(t)dt一f
2
(x)]. 由条件知,f(x)在[0,1]单调上升,f(x)>f(0)=0(x∈(0,1]),从而F’(x)与g(x)=2∫
0
x
f(t)dt—f
2
(x)同号.再考察 g’(x)=2 f(x)[1一f’(x)]>0(x∈(0,1)), g(x)在[0,1]连续,于是g(x)在[0,1]单调上升,g(x)>g(0)=0(x∈(0,1]),也就有F’(x)>0(x∈(0,1]),即F(x)在[0,1]单调上升,F(x)>F(0)=0(x∈(0,1]).因此 F(1)=[∫
0
1
f(x)dx]
2
一∫
0
1
f
3
(x)dx>0. 即结诊成立.
解析
转载请注明原文地址:https://jikaoti.com/ti/C02RFFFM
0
考研数学一
相关试题推荐
设f(x)=又设f(x)展开的正弦级数为S(x)=则S(3)=().
设A,B为随机事件满足条件1>P(A)>0,1>P(B)>0,且P(A—B)=0,则成立().
设f(x,y)=x2-(y-2)arcsin,则f′x(2,2)=().
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0.若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.(1)证明α1,α2,…,αn线性无关;(2)求A的特征值、特征向量.
设在全平面上有>0,则下列条件中能保证f(x1,y1)<f(x2,y2)的是().
原点O(0,0,0)到直线的距离d=__________.
设f(x)为可导函数,且满足条件,则曲线y=f(x)在点(1,f(1))处的切线斜率为()
设曲线L:f(x,y)=1(具有一阶连续偏导数)过第二象限内的点M和第四象限内的点N,Γ为L上从点M到点N的一段弧,则下列积分小于零的是()
设方阵A1与B1合同,A2与B2合同,证明:合同。
随机试题
一般螺杆式压缩机阳转子与驱动机连接,并由此输入功率。
A.起病6小时升高,24小时高峰,3~4日恢复正常B.起病4小时升高,16~24小时高峰,3~4日恢复正常C.起病8~10小时升高,2~3日高峰,1~2周恢复正常D.起病6~12小时升高,24~48小时高峰,3~6日恢复正常E.起病3小时升高,第2
6-磷酸葡萄糖脱氢酶缺乏时易发生溶血性贫血,其原因为
下列错误的是()
在搭接网络计划中,终点节点一般代表的意义为( )。
在规定装卸时间的办法中,使用最普遍的是()。
开心果(生阿月浑子果)()
萝卜、草莓、芝麻和花椰菜这几种常见的农产品所对应的植物器官依次是:
设f(x),g(x)在点x=xn处可口导且f(x0)=g(x0)=0,f’(x0)g’(x0)
软件开发中的瀑布模型典型地刻画了软件生存周期的阶段划分,软件开发方法中的(1)与其最相适应。
最新回复
(
0
)