设f(χ)在[0,1]上可微,且f(1)=2f(χ)dχ.证明:存在ξ∈(0,1),使得f′(ξ)=2ξf(ξ).

admin2022-10-09  31

问题 设f(χ)在[0,1]上可微,且f(1)=2f(χ)dχ.证明:存在ξ∈(0,1),使得f′(ξ)=2ξf(ξ).

选项

答案令φ(χ)=[*]f(χ),显然φ(χ)在[0,1]上可微,由积分中值定理得 f(1)=[*], 从而e-1f(1)=e[*]f(c),其中c∈[0,[*]],于是φ(c)=φ(1). 由罗尔定理,存在ξ∈(c,1)[*](0,1),使得φ′(ξ)=0.而φ′(χ)=e[*]f′(χ)-2χe[*]f(χ),所以[*]=0,注意到[*]≠0,故f′(ξ)-2ξf(ξ)=0,即f′(ξ)=2ξf(ξ).

解析
转载请注明原文地址:https://jikaoti.com/ti/BfhRFFFM
0

最新回复(0)