首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
admin
2020-03-01
38
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0与Bx=0同解。
以上命题中正确的有( )
选项
A、①②。
B、①③。
C、②④。
D、③④。
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,可得正确选项为B。
下面证明①,③正确;
对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0之中。从而Ax=0的有效方程的个数(即r(A))必不少于Bx=0的有效方程的个数(即r(B)),故r(A)≥r(B)。
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其基础解系包含的解向量的个数相同,即n—r(A)=n—r(B),从而r(A)=r(B)。
转载请注明原文地址:https://jikaoti.com/ti/BVtRFFFM
0
考研数学二
相关试题推荐
设n阶矩阵A的元素全为1,则A的n个特征值是________.
已知F(x)为函数f(x)的一个原函数,且f(x)=则f(x)=_____.
设f(χ)=,求f(χ)的连续区间及间断点.
已知α1=(—1,1,t,4)T,α2=(—2,1,5,t)T,α3=(t,2,10,1)T分别是四阶方阵A的三个不同的特征值对应的特征向量,则()
[20l5年]已知函数f(x)在区间[a,+∞]上具有2阶导数,f(a)=0,f′(x)>0,f″(0)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
[2009年]曲线在点(0,0)处的切线方程为__________.
已知α1=[一1,1,a,4]T,α2=[-2,1,5,a]T,α3=[a,2,10,1]T是4阶方阵A的三个不同特征值对应的特征向量,则a的取值范围为()
设(x)=(Ⅰ)若f(x)处处连续,求a,b的值;(Ⅱ)若a,b不是(Ⅰ)中求出的值时f(x)有何间断点,并指出它的类型.
设F(x)=∫xx+2πesintsintdt,则F(x)()
随机试题
在光与物质的相互作用中,可使光放大的是()。
患儿,4岁,3周来经常耸鼻子、扮鬼脸、甩胳膊、踢腿、鼓肚子等,这些症状一天内多次发生,由家长送入医院。关于该患儿的护理,说法错误的是【】
急性有机磷农药中毒急救最主要的一项治疗措施是
瘀阻气逆而致产后血晕主方为:
R质粒的叙述正确的是( )
根据我国有关法律、法规,权益投资主要有( )。
当今财务软件的功能在不断完善,其功能的发展趋势为()。
首次公开发行有明确锁定期的股票,同一股票在交易所上市后,按交易所上市的同一股票的市价估值。( )
商业银行可以采用以下哪种组织形式()。
Whodoyouthinkthemanistalkingto?
最新回复
(
0
)