首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T. (1)求(Ⅰ)的一个基础解系; (2)a为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求出全部公共非零解
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T. (1)求(Ⅰ)的一个基础解系; (2)a为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求出全部公共非零解
admin
2019-05-11
35
问题
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为
(Ⅱ)的一个基础解系为η
1
=(2,-1,a+2,1)
T
,η
2
=(-1,2,4,a+8)
T
.
(1)求(Ⅰ)的一个基础解系;
(2)a为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
选项
答案
(1)把(Ⅰ)的系数矩阵用初等行变换化为简单阶梯形矩阵 [*] 得到(Ⅰ)的同解方程组 [*] 对自由未知量x
3
,x
4
赋值,得(Ⅰ)的基础解系γ
1
=(5,-3,1,0)
T
,γ
3
=(-3,2,0,1)
T
. (2)(Ⅱ)的通解为c
1
η
1
+c
2
η
2
=(2c
1
-c
2
,-c
1
+2c
2
,(a+2)c
1
+4c
2
,c
1
+(a+8)c
2
)
T
. 将它代入(Ⅰ),求出为使c
1
η
1
+c
2
η
2
也是(Ⅰ)的解(从而是(Ⅰ)和(Ⅱ)的公共解),c
1
,c
2
应满足的条件(过程略)为: [*] 于是当a+1≠0时,必须c
1
=c
2
=0,即此时公共解只有零解. 当a+1=0时,对任何c
1
,c
2
,c
1
η
1
+c
2
η
2
都是公共解.从而(Ⅰ),(Ⅱ)有公共非零解.此时它们的公共非零解也就是(Ⅱ)的非零解:c
1
η
1
+c
2
η
2
,c
1
,c
2
不全为0.
解析
转载请注明原文地址:https://jikaoti.com/ti/BPLRFFFM
0
考研数学二
相关试题推荐
yy〞=1+y′2满足初始条件y(0)=1,y′(0)=0的解为_______.
求微分方程(1-χ2)y〞-χy′=0的满足初始条件y(0)=0,y′(0)=1的特解.
求微分方程χy=χ2+y2满足条件y|χ=e=2e的特解.
把二重积(χ,y)dχdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线χ+y=1,χ=1,y=1围成.
设f(χ)在(-∞,+∞)上有定义,χ0≠0为函数f(χ)的极大值点,则().
设三阶矩阵已知Aα和α线性相关,则a=______.
设A为n阶方阵,且A的各行元素之和为0,A*为A的伴随矩阵,A*≠O,则A*x=0基础解系的解向量的个数为______.
求二重积分|x2+y2-x|dxdy,其中D={(x,y)|0≤y≤1-x,0≤x≤1}.
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形。问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕z轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
随机试题
垂体分为腺垂体和_______。
在国际贸易的激烈竞争中,产品能否在国际市场上竞争取胜的决定性因素是()
A.盖髓术B.活髓切断C.干髓术D.根管治疗E.根尖手术下列情况疾病的治疗
报检员无权拒绝办理所属企业提交的单证不属实手续不齐全的报检业务,必须向上级申请方可。( )
BR选择的市场均衡价值(多空双方都可以接受的暂时定位)是前日的()。
董事会处在声誉风险管理的第一线,应当随时了解各类利益持有者所关注的问题,并且正确预测其对商业银行的业务、政策或运营调整可能产生的反应。()
某公司拟购买一种债券面值1000元,票面利率4%,期限3年,第三年年末到期,每年年末计息一次,到期时一次还本付息,在第三年年末,预计现金流入是()元。
物业服务企业在经营餐饮服务过程中,发生食品卫生问题的风险,属于()
戏剧和书法篆刻家使用的繁体字等小众文化产品,正面临阵地锐减、影响下降的处境。这样的表现,从技术层面说,并无大的问题,因为实用主义统治的时代,那些已经不甚实用的东西,可以退出技术的范畴,但是,从文化产品的延续性而言,那些被动辄几千年中国文明史检验了的文化,它
在下面的声音文件格式中,不能用来记录语音信息的是______。
最新回复
(
0
)