首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,α1,α2,α3是3维线性无关的列向量,且 Aα1=α1一α2+3α3, Aα2=4α1一3α2+5α3, Aα3=0. 求矩阵A的特征值和特征向量.
设A是3阶矩阵,α1,α2,α3是3维线性无关的列向量,且 Aα1=α1一α2+3α3, Aα2=4α1一3α2+5α3, Aα3=0. 求矩阵A的特征值和特征向量.
admin
2016-10-26
51
问题
设A是3阶矩阵,α
1
,α
2
,α
3
是3维线性无关的列向量,且
Aα
1
=α
1
一α
2
+3α
3
, Aα
2
=4α
1
一3α
2
+5α
3
, Aα
3
=0.
求矩阵A的特征值和特征向量.
选项
答案
由Aα
3
=0=0α
3
,知λ=0是A的特征值,α
3
是λ=0的特征向量. 由已知条件,有 A(α
1
,α
2
,α
3
)=(α
1
一α
2
+3α
3
,4α
1
一3α
2
+5α
3
,0) =(α
1
,α
2
,α
3
)[*] 记P=(α
1
,α
2
,α
3
),由α
1
,α
2
,α
3
线性无关,知矩阵P可逆,进而 P
-1
AP=B, 其中B=[*] 因为相似矩阵有相同的特征值,而矩阵B的特征多项式 [*] 所以矩阵A的特征值是:一1,一1,0. 对于矩阵B, [*] 所以矩阵B关于特征值λ=-1的特征向量是β=(一2,1,1)
T
. 若Bβ=λβ,即(P
-1
AP)β=λβ,亦即A(Pβ)=λ(Pβ),那么矩阵A关于特征值λ=-1的特征向量是 Pβ=(α
1
,α
2
,α
3
)[*]=-2α
1
+α
2
+α
3
. 因此K
1
(一2α
1
+α
2
+α
3
),K
2
α
3
分别是矩阵A关于特征值λ=一1和λ=0的特征向量,(K
1
K
2
≠0).
解析
转载请注明原文地址:https://jikaoti.com/ti/AmwRFFFM
0
考研数学一
相关试题推荐
0是n-1重特征值,另一个是3n
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设n阶矩阵A的元素全为1,则A的n个特征值是________.
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
设A是m×n矩阵,B是,n×m矩阵,则
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
随机试题
纲要体现了保障权力与规范权利相结合的理念。
简述社会主义社会教育的基本特征。
下列关于资产负债表项目的排列规则说法正确的是()
患者,女,20岁。因贫血入院。化验Hb65g/L,MCV72fl,MCH24pg,MCHC31%。最可能的诊断是
监理单位与建设单位的关系是()。
人才管理的主要内容包括()。
假定某投资者在某年3月1日以期货方式按每股30元的价格买进1000股A公司股票,交割日为同年6月1日。同年5月12日该股票价格涨到32元,该投资者随即以每股32元的价格卖出该股票1000股的期货合约。若不考虑佣金、契约税等交易成本,从这项交易中该投资者(
一般资料:求助者,男,33岁,公司职员。案例介绍:今年春节前求助者的父亲在老家突发心脏病去世,求助者将母亲接来同住。最初的一个多月的时间里,妻子和母亲还能够和平相处,但随着时间的推移,双方的矛盾逐渐显现出来;从日常的饮食起居到孩子的培养教育都能成
班主任工作的重点是()。
"DoyouwanttoseemyIDcardormydriver’slicense?""______willdo."
最新回复
(
0
)