首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(03)已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
(03)已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2018-08-01
44
问题
(03)已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0,l
2
:bx+2cy+3a=0,l
3
:cx+2ay+3b=0
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
必要性 设三直线交于一点(
0
,y
0
),则[x
0
,y
0
,1]
T
为方程组Ax=0的非零解,其中矩阵 [*] 于是有|A|=0,而 |A|=[*]=-6(a+b+c)[a
2
+b
2
+c
2
-ab-bc-ac] =-3(a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
] 但(a-b)
2
+(b-c)
2
+(c-a)
2
≠0,故得a+b+c=0. 充分性 设a+b+c=0.考虑线性方程组 [*] 对其增广矩阵作初等行变换,得 [*] 可知方程组(*)等价于方程组 [*] 因为[*]=2(ac-b
2
) (将c=-a-b代入) =-2[a(a+b)+b
2
]=-[a
2
+b
2
+(a+b)
2
]≠0. 故方程组(**)有惟一解,所以方程组(*)有惟一解,即三直线l
1
,l
2
,l
3
交于一点.
解析
转载请注明原文地址:https://jikaoti.com/ti/A8WRFFFM
0
考研数学二
相关试题推荐
设函数f(x)=(α>0,β>0).若(x)在x=0处连续,则
设A是,n阶矩阵,下列结论正确的是().
用配方法化下列二次型为标准形:f(x1,x2,x3)=x12+2x2x2-5x3x2+2x1x2-2x1x3+2x2x3.
用正交变换法化二次型f(x1,x2,x3)=x12+x2x2+x3x2-4x1x2-4x1x3-4x2x3为标准二次型
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则().
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
求方程组的通解.
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e-4+x2+3x+2,则Q(x)=_______,该微分方程的通解为_______.
就a,b的不同取值,讨论方程组解的情况.
随机试题
简述在SQL中,DELETE语句与DROPTABLE的区别。
人的工作绩效不仅取决于其能力的大小,还取决于()
胎儿食管闭锁的声像图特点是
A.髓内肿瘤B.髓外硬脊膜下肿瘤C.硬膜外肿瘤D.脊髓空洞症E.脊髓炎下列病人最可能的诊断是:女性,45岁。右下肢疼痛无力半月余,疼痛较为剧烈,半年前行肺癌手术,X线平片上可见腰1~腰3椎体破坏,则患者
下列选项中,属于构成商业秘密条件的是()。
需求价格点弹性适用于()。
明代施耐庵的《水浒传》是我国第一部以城镇为题材的长篇小说。()
一般商品只有在多次流通过程中才能不断增值,但艺术品作为一种特殊商品却体现出了与一般商品不同的特性。在拍卖市场上,有些古玩、字画的成交价有很大的随机性,往往会直接受到拍卖现场气氛、竞价激烈程度、买家心理变化等偶然因素的影响,成交价有时会高于底价几十倍乃至数百
请用不超过150字的篇幅,概括出给定资料所反映的主要问题。就给定资料所反映的主要问题,用1200字左右的篇幅,自拟标题进行论述。要求中心明确,内容充实,论述深刻,有说服力。
中国目前仍面临着人口多、资源少的严峻现实。鉴于中国目前的资源储备(resourcereserve),很多人认为我们仍要继续实行计划生育政策(theone-childpolicy),但在这一问题上,也有人持有不同的观点。很多人认为诸如劳动力短缺,人口老
最新回复
(
0
)