首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组 的系数矩阵记为A,Mj(j=1,2,…,n)是矩阵A中划去第j列所得到的行列式,证明:如果Mj不全为0,则(M1,-M2,…,(-1)n-1Mn)T是该方程组的基础解系.
设齐次线性方程组 的系数矩阵记为A,Mj(j=1,2,…,n)是矩阵A中划去第j列所得到的行列式,证明:如果Mj不全为0,则(M1,-M2,…,(-1)n-1Mn)T是该方程组的基础解系.
admin
2016-10-20
60
问题
设齐次线性方程组
的系数矩阵记为A,M
j
(j=1,2,…,n)是矩阵A中划去第j列所得到的行列式,证明:如果M
j
不全为0,则(M
1
,-M
2
,…,(-1)
n-1
M
n
)
T
是该方程组的基础解系.
选项
答案
因为A是(n-1)×n矩阵,若M
j
不全为0,即A中有n-1阶子式非零,故r(A)=n-1.那么齐次方程组Ax=0的基础解系由n-r(A)=1个非零向量所构成. [*] 按第一行展开,有D
i
=a
i1
M
21
-a
i2
M
2
+…+a
in
(-1)
1+n
M
n
. 又因D
i
中第一行与第i+1行相同,知D
i
=0.因而 a
i1
M
1
-a
i2
M
2
+…+a
in
(-1)
n-1
M
n
=0. 即(M
1
,-M
2
,…,(-1)
n-1
M
n
)
T
满足第i个方程(i=1,2,…,n-1),从而它是Ax=0的非零解,也就是Ax=0的基础解系.
解析
转载请注明原文地址:https://jikaoti.com/ti/A2xRFFFM
0
考研数学三
相关试题推荐
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
设β,α1,α2线性相关,β,α2,α3线性无关,则().
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α5=(2,-1,4,1),求:(1)向量组的秩;(2)求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示.
证明[*]
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
下列反常积分是否收敛?如果收敛求出它的值:
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
已知线性方程组(I)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
随机试题
《中国药典》规定,以人参皂苷Rb1为质量控制成分的是()。
饮用水质的净化处理和捎毒,通常的步骤是
血中还原血红蛋白至少达多少时,皮肤粘膜可出现紫绀
在项目组织方面,业主变自行管理模式为委托项目管理模式,这体现了工程项目管理具有( )趋势。
债券收益率曲线通常表现的形态包括()。
某外贸企业为增值税一般纳税人,具有进出口经营权。2014年3月发生相关经营业务如下:(1)购进衬衫一批,价款300万人民币,取得专用发票,该批衬衫当月全部出口,出口离岸价为人民币500万元;(2)从日化工厂购进化妆品一批,专用发票上注明
美学作为一门独立学科诞生于()。
适度的过度学习有利于记忆的保持,一般来说,学习程度以()为最佳,其效果最好。
教师参加专业的学术团体,在学术活动中充分发表意见,进行学术交流,这是《中华人民共和国教师法》赋予教师的()。
A、goodhealthcareandotherservicesB、fewerandfewerchallengesandpressuresC、moreinternationaldiscussionsbetweencountr
最新回复
(
0
)