首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3为方程组AX=0的一个基础解系,则下列向量组中也是方程组AX=0的基础解系的是( ).
设向量组α1,α2,α3为方程组AX=0的一个基础解系,则下列向量组中也是方程组AX=0的基础解系的是( ).
admin
2020-03-01
43
问题
设向量组α
1
,α
2
,α
3
为方程组AX=0的一个基础解系,则下列向量组中也是方程组AX=0的基础解系的是( ).
选项
A、α
1
+α
2
,α
2
+α
3
,α
3
-α
1
B、α
1
+α
2
,α
2
+α
3
,α
1
+2α
2
+α
3
C、α
1
+2α
2
,2α
2
+3α
3
,3α
3
+α
1
D、α
1
+α
2
+α
3
,2α
1
-3α
2
+22α
3
,3α
1
+5α
2
-5α
3
答案
C
解析
根据齐次线性方程组解的结构,四个向量组皆为方程组AX=0的解向量组,容易验证四组中只有C组线性无关,所以选C.
转载请注明原文地址:https://jikaoti.com/ti/A2tRFFFM
0
考研数学二
相关试题推荐
设有矩阵则r(AB)=________.
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A-2B|=_______
ln3因是奇函数,因此所以
设二维非零向量口不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化.
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,
设y=f(x)是区间[0,1]上任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间在区间[0,x0]上以f(x0)为高的矩形的面积等于在区间[x0,1]上以y=f(x)为曲面的曲边梯形的面积.(2)又设f(x)在(0,1)上可导,且f’(x)
[2006年]设数列{xn}满足0<x1<π,xn-1=sinxn(n=1,2,…).证明xn存在,并求该极限.
设则f(x,y)在点O(0,0)处()
D是一块矩形域,如图2—3所示.[*]首先写出被积函数的具体表达式,然后在直角坐标系中计算二重积分.
矩形闸门宽a米,高h米,垂直放在水中,上边与水面相齐,闸门压力为().
随机试题
以下关于男子西服着装的说法中,正确的是()。
DoyouthinkthepricesofTVsetswill______thisyearforChina’sWTOentry?
下丘脑-垂体-卵巢轴的调节存在反馈作用,错误的是
A.拇指对掌功能障碍B.手内肌萎缩,爪形手畸形C.垂腕D.骨关节外展障碍E.骨关节内展障碍尺神经腕部损伤
执行应急关闭程序,由事故()宣布应急结束。
某企业批量生产一种零件,投产批量为6件,经过4道工序加工,按照加工顺序,单件每道工序作业时间依次为20分钟、10分钟、25分钟、15分钟,假设零件移动用时为零。根据以上资料,回答下列问题:将一个批次的该种零件全部生产出来,工序间、搬运次数最多
根据中外合资经营企业法律制度的规定,合营合同规定分期缴付出资的,合营各方第一期的出资额应为()。
社会主义性质的分配原则是()。
工业革命之后,大量生产使经济活动大幅扩充;中产阶级形成,人类的生活质量不断地提升。这一切巨变,都是围绕着市场。稍微详细一些来说,工业革命带来量产,而量产使经济活动蓬勃发展。通过市场的交易,买卖双方互蒙其利。在供给面,随着市场规模的扩大,企业家得到可观的利润
在雄辩家的培养方式上,西塞罗最为提倡的方法是()。
最新回复
(
0
)