首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0; (Ⅱ)设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h
(I)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0; (Ⅱ)设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h
admin
2019-02-20
38
问题
(I)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0;
(Ⅱ)设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
选项
答案
(I)由于a<c<b,由已知条件可知f(x)在[a,c]与[c,b]上都满足拉格朗日中值定理的条件, 故存在点ξ
1
∈(a,c),ξ
2
∈(c,b),使 f(c)-f(a)=f’(ξ
1
)(c-a), ξ
1
∈(a,c); f(b)-f(c)=f’(ξ
2
)(b-c), ξ
2
∈(c,b). 由于f(a)=f(b)=0,于是有 f(c)=f’(ξ
1
)(c-a), ① -f(c)=f’(ξ
2
)(b-c). ② 由于c-a>0,b-c>0,f(c)<0,因此由式①、②可知 f’(ξ
1
)<0,f’(ξ
2
)>0. 由已知条件知f’(x)在[ξ
1
,ξ
2
]上满足拉格朗日中值定理的条件,故存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使 [*] (Ⅱ)令F(x)=f(a+x)+f(a-x),则F(x)在[0,h]上连续,在(0,h)内可导,由拉格朗日中值定理可得存在θ∈(0,1)使得 [*] 由于 F(h)-F(0)=f(a+h)+f(a-h)-2f(a), F’(x)=f’(a+x)-f’(a-x), F’(θh)=f’(a+θh)-f’(a-θh), 因此存在满足0<θ<1的θ使得 [*]
解析
(I)证明在某区间内存在一点ξ使得f’(ξ)=0常可考虑利用罗尔定理,而证明在某区间内存在一点ξ使得f’(ξ)>0常可考虑利用拉格朗日中值定理.
(Ⅱ)分析:在[a,a+h]和[a-h,a]上分别对f(x)应用拉格朗日中值定理可得到存在θ
1
,θ
2
∈(0,1)使得
f(a+h)-f(a)=f’(a+θ
1
h)h, f(a-h)-f(a)=-f’(a-θ
2
h)h,
这时有
然而θ
1
与θ
2
未必相等.若将f(a+h)-2f(a)+f(a-h)重新组合成
f(a+h)-2f(a)+f(a-h)=[f(a+h)+f(a-h)]-[f(a+0)+f(a-0)],
我们发现它是F(x)=f(a+x)+f(a-x)在点x=h的值减去在点x=0的值,并且f’(a+θh)-f’(a-θh)=F’(θh),要证的等式就是对F(x)在[0,h]上应用拉格朗日中值定理的结果.
转载请注明原文地址:https://jikaoti.com/ti/9xBRFFFM
0
考研数学三
相关试题推荐
设f(x)=,则()
设f(x)在x=a处的左右导数都存在,则f(x)在x=a处().
设有齐次线性方程组Ax=0和Bx=0,其中A,n均为m×n矩阵,现有四个命题:①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A)=r(B);④若r(
若函数f(x)在x=1处的导数存在,则极限=_______
设A,B分别为m×n及n×s矩阵,且AB=0.证明:r(A)+r(B)≤n.
设(I)函数f(x)在[0,+∞)上连续,且满足0≤f(x)≤ex一1;(Ⅱ)平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别交于点P2和P1;(Ⅲ)由曲线y=f(x)与直线MN及x轴围成的平面图形的面积S恒等于线段P1P2之
计算二重积分I=sin(x2+y2)dxdy,其中积分区域D={(x,y)|x2+y2≤π}.
设f(x)在(一1,1)内具有二阶连续导数且f”(x)≠0.证明:(1)对于任意的x∈(一1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
已知曲线y=y(x)经过点(1,e-1),且在点(x,y)处的切线方程在y轴上的截距为xy,求该曲线方程的表达式.
设f(x)在[a,b]上二阶可导,且f(x)>0,使不等式f(a)(b—a)<∫abf(x)dx<(b—a)成立的条件是()
随机试题
活动性风湿患者抗O试验效价超过多少有诊断意义
在下列化合物中,乙醇的同分异构体是
A.雌激素或选择性雌激素受体调节剂B.双膦酸盐C.降钙素D.雄激素E.维生素D应用糖皮质激素引起的骨质疏松症患者,宜选用()。
(2009年)聚丙烯酸的结构式为它属于()。①无机物:②有机物;③高分子化合物;④离子化合物;⑤共价化合物
定量预测的依据是()。
在残疾收入补偿保险中,被保险人在丧失能力后的一段时间(比如3个月或6个月)内保险人不给付任何保险金。这段不给付保险金的期间通常被称为( )。
企业计提应交消费税时,可根据不同的情况借记的会计科目有()。
基线测量是()。
有人认为,任何规律都具有普遍性,而唯物辩证法研究的就是普遍规律。因此,任何规律都是唯物辩证法的研究对象。这种观点()。
A、Gettoworkontime.B、Makethemanandothershappy.C、Beatworkanhourearlier.D、Movetoanearerapartment.A对话结尾女士问男士能不
最新回复
(
0
)