首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程组AX=β有解但不唯一. (1)求a; (2)求可逆矩阵P,使得P-1AP为对角阵; (3)求正交阵Q,使得QTAQ为对角阵.
设方程组AX=β有解但不唯一. (1)求a; (2)求可逆矩阵P,使得P-1AP为对角阵; (3)求正交阵Q,使得QTAQ为对角阵.
admin
2017-09-15
39
问题
设
方程组AX=β有解但不唯一.
(1)求a;
(2)求可逆矩阵P,使得P
-1
AP为对角阵;
(3)求正交阵Q,使得QTAQ为对角阵.
选项
答案
(1)因为方程组AX=β有解但不唯一,所以|A|=0,从而a=-2或a=1. 当a=-2时, [*] r(A)=r([*])=2<3,方程组有无穷多解; 当a=1时, [*] r(A)=1<r([*]),方程组无解,故a=-2. (2)由|λE-A|=λ(λ+3)(λ-3)=0得λ
1
=0,λ
2
=3,λ
3
=-3. 由(0E-A)X=0得λ
1
=0对应的线性无关的特征向量为ξ
1
=[*]; 由(3E-A)X=0得λ
2
=3对应的线性无关的特征向量为ξ
2
=[*]; 由(-3E-A)X=0得λ
3
=-3对应的线性无关的特征向量为 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/9XdRFFFM
0
考研数学二
相关试题推荐
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设矩阵A与B相似,且求a,b的值;
已知边长x=6m与y=8m的矩形,求当z边增加5cm,y边减少10cm时,此矩形对角线变化的近似值.
n阶方阵A具有n个不同的特征值是A与对角阵相似的().
设矩阵,问当k为何值时,存在可逆矩阵P,使得P-1AP为对角矩阵?并求出P和相应的对角矩阵.
n阶矩阵A具有n个不同的特征值是A与对角矩阵相似的
随机试题
急性中毒性精神障碍最重要的一个临床症状是
某儿童身高等级评价结果在+1~+2个标准差之间,其发育为
某水闸建筑在砂质壤土地基上,水闸每孔净宽8m,共3孔,采用平板闸门,闸门采用一台门式启闭机启闭,闸墩厚度为2m,因闸室的总宽度较小,故不分缝。闸底板的总宽度为30m,净宽为24m,底板顺水流方向长度为20m。施工中发现由于平板闸门主轨、侧轨安装出现严重偏差
施工图预算审查时,将分部分项工程的单位建筑面积指标总结归纳为工程量、价格、用工三个单方基本指标,然后利用这些基本指标对拟建项目分部分项工程预算进行审查的方法称为()。
关于锅炉房防火设计的说法,正确的有()。
矩阵式组织结构的缺点是________。
近年来,我国大力推动农村互联网建设,目前已初步建成融合、泛在、安全、绿色的宽带网络环境,基本实现“城市光纤到楼到户,农村宽带进乡入村”。2019年,我国已建成全球最大规模光纤和移动通信网络,行政村通光纤和4G比例均超过98%。调查显示,截至20
Courtrecord
[*]
以下叙述中正确的是
最新回复
(
0
)