[2012年] 证明xln(一1<x<1).

admin2019-04-05  64

问题 [2012年]  证明xln(一1<x<1).

选项

答案 将待证的不等式的右边移至左边作辅助函数,用单调性证其成立.若一阶导数的符号不好确定,可继续求高阶导数,直到导数符号确定为止. 证 令f(x)=xln[*]+cosx一1一[*](一1<x<1).因ln[*]=ln(1+x)一 ln(1一x)为奇函数(自变量带相反符号的两同名函数之差为奇函数),故xln[*]为偶函数. 因而f(x)为偶函数,故只需讨论x≥0的情况即可.又 f′(x)=ln[*]—sinx—x =ln[*]sinx—x(0≤x<1), 其正、负符号不好确定.下面再求二阶导数: f″(x)=[*]—cosx—1 =[*]一cosx一1 =[*]一cosx一1 (0≤x<1). 因0≤x<1,(1一x2)2<l,故4/(1一x2)2>4,所以f″(x)>0(0≤x<1).于是当x∈[0,1)时,f″(x)>0,从而f′(x)单调增加,则f′(x)>f′(0)=0.所以当0≤x<1时, f(x)单调增加,即f(x)≥f(0)=0.于是当一1<x<l时,有f(x)≥0,即xln[*]+cosx≥l+[*](一1<x<1).

解析
转载请注明原文地址:https://jikaoti.com/ti/9BLRFFFM
0

最新回复(0)