首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)可微,且满足,则f(x)= .
设f(x)可微,且满足,则f(x)= .
admin
2019-08-27
35
问题
设f(x)可微,且满足
,则f(x)=
.
选项
答案
cosx-sin x
解析
【思路探索】由题设条件,利用变限函数求导法得微分方程:f"(x)+f(x)=0,且f(0)=1,fˊ(0)=-1,解该方程即可得f(x).
于是原方程变为
.两边对x求导,得
整理得
两边再对x求导,得0=fˊ(x)-f(-x)·(-1),即
fˊ(x)=-f(-x),fˊ(-x)=-f(x) (*)
上式两边对x求导,得f"(x)=fˊ(-x). (**)
由(*),(**)得f"(x)=-f(x).即f"(x)+f(x)=0.解此方程得
注意到f(0)=1,fˊ(0)=-1,又因为f(0)=C
1
,fˊ(0)=C
2
,所以C
1
=1,C
2
=-1.
故f(x)=cos x-sin x.
故应填cos x-sin x.
【错例分析】对于本题,有的学生做法如下:
在已知方程
两端对x求导,得
又f(0)=0,所以f(x)=1.故应填1.
上述做法显然是错误的,原因是积分
不能直接对x求导,而正确的做法是:先通过变量代换u=t-x,使
,即使积分
的被积函数f(x)中不出现x,然后再在已知方程两端对x求导,并解方程.
转载请注明原文地址:https://jikaoti.com/ti/98tRFFFM
0
考研数学二
相关试题推荐
已知n维向量组α1,α2,α3,α4是线性方程组Ax=0的基础解系,则向量组aα1﹢bα4,aα2﹢bα3,aα3﹢bα2,aα4﹢bα1也是Ax=0的基础解系的充分必要条件是()
(I)证明以柯西一施瓦茨(Cauchy-Schwarz)命名的下述不等式:设f(x)与g(x)在闭区间[a,b]上连续,则有[∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx;(Ⅱ)证明下述不等式:设f(x)在闭区间[0,1]上
设二二次型f(x1,x2,x3)=ax12+ax22+(a—1)x32+2x1x3—2x2x3。求二次型f的矩阵的所有特征值;
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为k1+k2,设β=,求Aβ.
设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,x=1是f(x)的极值点,且证明:存在ξ∈(0,1),使得f"(ξ)=0。
已知凹曲线y=f(x)在曲线上的任意一点(x,f(x))处的曲率为且f(0)=0,f’(0)=0,则f(x)=______________。
从抛物线y=x2—1上的任意一点P(t,t2—1)引抛物线y=x2的两条切线.证明该两条切线与抛物线y=x2所围面积为常数.
求极限
求在χ=1时有极大值6,在χ=3时有极小值2的三次多项式.
设y=y(x)由yexy+xcosx-1=0确定,求dy|x=0=______.
随机试题
在考生文件夹下打开文档WORD.DOCX,按照要求完成下列操作并以该文件名(WORD.DOCX)保存文档。某高校为了使学生更好地进行职场定位和职业准备、提高就业能力,该校学工处将于2013年4月29日(星期五)19:30一21:30在校国际会议中心举办题
甲被法院宣告死亡,甲父乙、甲妻丙、甲子丁分割了其遗产。后乙病故,丁代位继承了乙的部分遗产。丙与戊再婚后因车祸遇难,丁、戊又分割了丙的遗产。现甲重新出现,法院撤销死亡宣告。对此,下列说法正确的是()。
Aweddingiscelebratedwithsomekindofceremonyalmosteverywhereintheworld.Theceremonyisdifferentamongdifferentnat
在心肌损伤时最先升高的指标是
以牙槽骨水平吸收为主的牙周炎是()
维生素A、D的最好来源是维生素C的最好来源是
( )为强效、长效抗炎镇痛药。( )属于灭酸类抗炎解热、镇痛药。
与心相表里的脏腑为( )。
关于审计重要性,下列说法中错误的是()。
货运代理可代办()方面的业务。
最新回复
(
0
)