设A为n阶方阵(n≥2),A*为A的伴随矩阵,证明:

admin2017-04-19  27

问题 设A为n阶方阵(n≥2),A*为A的伴随矩阵,证明:

选项

答案当r(A)=n时,|A|≠0,|A*|=|A|n-1≠0,即知r(A*)=n当r(A)=n一1时,A中非零子式的最高阶数为n一1,一方面有A*≠0,r(A*)≥1,另一方面有|A|=0,A*A=|A|E=0.故A的每一列都是方程组A*x=0的解向量,r(A)=n一1说明A*x=0至少有n一1个线性无关解向量,故n一r(A*)≥n一1,r(A*)≤1,以上两方面说明r(A*)=1;当r(A)<n一1时,A中每个n一1阶子式—一即A的每个元素的余子式都为零,A*=0,从而有r(A*)=0

解析
转载请注明原文地址:https://jikaoti.com/ti/8cwRFFFM
0

随机试题
最新回复(0)