首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y(x),y(x)与y(x)是二阶线性非齐次方程 y’’+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为________
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y(x),y(x)与y(x)是二阶线性非齐次方程 y’’+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为________
admin
2019-05-14
46
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y(x),y(x)与y(x)是二阶线性非齐次方程
y’’+p(x)y’+q(x)y=f(x) ①
的3个解,且
则式①的通解为________
选项
答案
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
-y
2
与y
2
-y
3
均是式①对应的线性齐次方程
y’’+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与
2
使k
1
(y
1
-y
2
)+k
2
(y
2
-y
3
)=0. ③
设k
1
≠0,又由题设知y
2
-y
3
≠0,于是式③可改写为
=常数,矛盾.若k
1
=0,由y
2
-y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
-y
2
与y
2
-y
3
线性无关.于是 Y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
⑤
为式①的通解.
转载请注明原文地址:https://jikaoti.com/ti/8YoRFFFM
0
考研数学一
相关试题推荐
计算下列各题:设y=求dy/dx;
求xn的收敛域及和函数.
讨论下列函数的连续性并判断间断点的类型:
设有参数方程0≤t≤π.讨论y=y(x)的可导性与单调性;
假设批量生产的某种配件的内径X服从正态分布N(μ,σ2),今随机抽取16个配件,测得平均内径=3.05毫米,样本标准差s=0.4毫米,试求μ和σ2的90%置信区间.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为0.5,则μ=_______.
设随机变量X1,X2,…,Xn(n>1)独立同分布,且方差σ2>0,记Xi,则X1-的相关系数为
(2018年)将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.
对二事件A、B,已知P(A)=0.6,P(B)=0.7,那么P(AB)可能取到的最大值是_______,P(AB)可能取到的最小值是_______.
将f(x)=arctanx展开成x的幂级数.
随机试题
医患之间的道德关系是
出血坏死型胰腺炎患者出现Cullen征是指
用文克勒地基模型计算弹性地基梁板时,所用的计算参数称为基床系数k,其计量单位为kN/m3。()是正确的。
在双代号时标网络计划中,关键线路是指( )。
某建设单位经相关主管部门批准,组织某建设项目全过程总承包(即EPC模式)的公开招标工作。根据实际情况和建设单位要求,该工程工期定为两年,考虑到各种因素的影响,决定该工程在基本方案确定后即开始招标,确定的招标程序如下:(1)成立该工程招标领导机构;
甲公司从事土地开发与建设业务,2×20年1月1日与土地使用权及地上建筑物相关的交易或事项有:(1)股东作为出资投入土地使用权的公允价值为2800万元,地上建筑物的公允价值为2500万元,上述土地使用权及地上建筑物供管理部门办公使用,预计使用年限为40年;(
转变经济发展方式
考生文件夹下存在一个数据库文件“samp3.accdb”,里面已经设计好表对象“tEmployee”和“tGroup”及查询对象“qEmployee”,同时还设计出以“qEmployee”为数据源的报表对象“rEmployee”。试在此基础上按照以下要求补
WRITINGTASK2Youshouldspendabout20minutesonthistask.Writeaboutthefollowingtopic:Somepeoplethinkth
Little______thatthepoliceareabouttoarresthim.
最新回复
(
0
)