首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
admin
2018-11-23
31
问题
求常数a,使得向量组α
1
=(1,1,a)
T
,α
2
=(1,a,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(-2,a,4)
T
,β
3
=(-2,a,a)
T
线性表示,但是β
1
,β
2
,β
3
不可用α
1
,α
2
,α
3
线性表示.
选项
答案
用秩来表达就是r(β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)>r(α
1
,α
2
,α
3
). [*] 当a≠1和-2时,r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β
1
β
2
,β
3
)=3,不符合要求. 当a=-2时,r(α
1
,α
2
,α
3
)=2,r(β
1
,β
2
,β
3
)=2,不符合要求. 当a=1时,r(α
1
,α
2
,α
3
)=1,r(β
1
,β
2
,β
3
)=3,必有r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=3,符合要求,得a=1.
解析
转载请注明原文地址:https://jikaoti.com/ti/881RFFFM
0
考研数学一
相关试题推荐
已知A,B,C都是行列式值为2的三阶矩阵,则D==_______。
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,若α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________.
设函数f(x)可导,且f(0)=0,F(x)=∫0xtn-1f(xn一tn)dt,试求
设矩阵是矩阵A*的一个特征向量,λ是α对应的特征值,其中A*是矩阵A的伴随矩阵.试求a、b和λ的值.
求分别满足下列关系式的f(x).(1)f(x)=∫0xf(t)dt,其中f(x)为连续函数;(2)f’(x)+xf’(一x)=x.
设函数f(x)满足关系式f"(x)+[f’(x)]2=x,且f’(0)=0,则
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且秩(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=
设X1,X2,…,Xn是同分布的随机变量,且EX1=0,DX1=1.不失一般性地设X1为连续型随机变量.证明:对任意的常数λ>0,有.(不熟者可对n=2证明)
假设X=sinZ,y=cosZ,其中Z在区间[-π,π]上均匀分布,求随机变量X和Y的相关系数ρ.试说明X和Y是否独立.
设n>1,n元齐次方程组AX=0的系数矩阵为(1)讨论a为什么数时AX=0有非零解?(2)在有非零解时求通解.
随机试题
()是腹部按摩常用穴位。
意境超验层
某村有居民户即总体单位数为3000户,已确定样本数为300户,居民家庭收入分高、中、低三层。其中,高收入的居民户数为300户,占总体单位数的比重为10%,中等收入的居民户数为1200户,占总体单位数的40%,低收入居民的户数为1500户,占总体单位数的比重
对于胎儿发育,下列哪项正确
哺乳期禁用的药物是
成本是按一定的产品或劳务对象所归集的费用,是对象化了的费用。()
房价是购房者购房时考虑的主要因素之一。一般而言,房价取决于两个因素,一个是区位,另一个是()。
下列选项中,属于限制行为能力人的有()。
关于事实行为的表述,正确的是()。
Inoursocietytherazorofnecessitycutsclose.Youmustmakeabucktosurvivetheday.Youmustworktomakeabuck.Thejob
最新回复
(
0
)