首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明你的结论.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明你的结论.
admin
2018-08-03
41
问题
设D=
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.
利用(1)的结果判断矩阵B—C
T
A
—1
C是否为正定矩阵,并证明你的结论.
选项
答案
矩阵B—C
T
A
—1
C是正定矩阵.证明:由(1)的结果知D合同于矩阵M=[*],又D为正定矩阵,所以M为正定矩阵.因M为对称矩阵,故B一C
T
A
—1
C为对称矩阵.由M正定,知对m维零向量x=(0,0,…,0)
T
及任意的n维非零向量y=(y
1
,y
2
,…,y
n
)
T
,有[x
T
,y
T
]M[*]=y
T
(B—C
T
A
—1
C)y>0 故对称矩阵B—C
T
A
—1
C为正定矩阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/822RFFFM
0
考研数学一
相关试题推荐
设f(x)在[a,+∞)上连续,f(a)<0,而存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:(1)存在c∈(0,1),使得f(c)=1—2c;(2)存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设f(x)为偶函数,且满足f’(x)+2f(x)一3∫0xf(t一x)dt=一3x+2,求f(x).
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
在全概率公式P(B)=P(Ai)P(B|AI)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为
设随机变量X服从标准正态分布N(0,1),在X=x(一∞<x<+∞)的条件下,随机变量Y服从正态分布N(x,1).求在Y=y条件下关于X的条件概率密度.
判定下列级数的敛散性,当级数收敛时判定是条件收敛还是绝对收敛:
随机试题
Whichofthefollowingisthecoefficientofxyin(3x+4y-xy)(4x+3y+1)?
与自喷井分层采油管柱相比,抽油机分层采油井分层()差异大,调整不方便,需要作业起泵。
善治风湿热痹者善治上肢风寒湿痹者
智能型超声波仪组成部分包括()。
责任中心具有相对独立的经营活动和财务收支活动。()
广州的张某和重庆的李某与北京的甲公司签订劳动合同,担任甲公司驻天津办事处业务代表职位,二人因工作关系渐生爱意,已发展至谈婚论嫁的程度,甲公司以二人违反公司禁止员工内部婚恋的制度,与两人解除劳动合同并拒绝支付经济补偿,两人拟申请劳动仲裁,则其可以向(
纳什在《大自然的权利》中提出:“人们对自然的了解越多,就越难以接受那种认为宇宙是为人类而存在的观点。与其说人类是自然的主人,不如说他是自然共同体的一个成员。”这说明()。
所谓诉讼,就是平时所讲的“打官司”,刑事诉讼则是有关犯罪方面的官司。()
(2018年)设F(x,y,z)=xyi一yzj+zxk,则rotF(1,1,0)=________________.
AfederaljudgeonMondaycertifieda$200billionclassactionlawsuitagainstthetobaccoindustryforitsmarketingoflight
最新回复
(
0
)