证明:当x>0时,arctanx+1/x>π/2.

admin2021-10-18  35

问题 证明:当x>0时,arctanx+1/x>π/2.

选项

答案令f =arctanx+1/x,因为f’(x)=1/(1+x2)-1/x2<0(x>0),所以f(x)在(0,+∞)内单调递减,又因为[*],所以f(x)>π/2,即arctanx+1/x>π/2.

解析
转载请注明原文地址:https://jikaoti.com/ti/7dlRFFFM
0

最新回复(0)