首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设函数y=y(χ)由方程sin(χ2+y2)+eχ-χy2=0所确定,求; (Ⅱ)设eχ+y=y确定y=y(χ),求y′,y〞; (Ⅲ)设函数y=f(χ,y),其中f具有二阶导数,且f′≠1,求.
(Ⅰ)设函数y=y(χ)由方程sin(χ2+y2)+eχ-χy2=0所确定,求; (Ⅱ)设eχ+y=y确定y=y(χ),求y′,y〞; (Ⅲ)设函数y=f(χ,y),其中f具有二阶导数,且f′≠1,求.
admin
2016-10-21
36
问题
(Ⅰ)设函数y=y(χ)由方程sin(χ
2
+y
2
)+e
χ
-χy
2
=0所确定,求
;
(Ⅱ)设e
χ+y
=y确定y=y(χ),求y′,y〞;
(Ⅲ)设函数y=f(χ,y),其中f具有二阶导数,且f′≠1,求
.
选项
答案
(Ⅰ)将原方程两边直接对χ求导数,并注意y是z的函数,然后解出y′即可.由 (2χ+2y.y′)cos(χ
2
+y
2
)+e
χ
-y
2
-2χy.y′=0. 得y′=[*] (Ⅱ)注意y是χ的函数,将方程两端对χ求导得 e
χ+y
(1+y′)=y′,即y′=[*].(这里用方程e
χ+y
=y化简) 再将y′的表达式对χ求导得 y〞=[*] 或将[*]满足的方程[*]两边对χ求导得[*],再代入[*]的表达式,同样可求得[*]. (Ⅲ)y=y(χ)由方程f(χ+y)-y=0确定,f为抽象函数,若把f(χ+y)看成f(u),而u=χ+y,y=y(χ),则变成复合函数和隐函数的求导问题.注意,f(χ+),及其导函数f′(χ+y)均是χ的复合函数. 将y=f(χ+y)两边对χ求导,并注意y是χ的函数,f是关于χ的复合函数,有 y′=f′.(1+y′),即y′=[*](其中f′=f′(χ+y)). 又由y′=(1+y′),f′再对χ求导,并注意y′是χ的函数,f′即f′(χ+y)仍然是关于χ的复合函数,有 y〞=(1+y′)f′+(1+y′)(f′)′
χ
=y〞f′+(1+y′)f〞.(1+y′)=y〞f′(1+y′)
2
f〞, 将y′=[*]代入并解出y〞即得 y〞=[*](其中f′=f′(χ+y),f〞=f〞(χ+y)). 或直接由y′=[*]再对χ求导,同样可求得y〞=[*].
解析
转载请注明原文地址:https://jikaoti.com/ti/7IzRFFFM
0
考研数学二
相关试题推荐
e-1/3
证明
4/π
设f(x)在x=2处连续,且,则曲线y=f(x)在点(2,f(2))处的切线方程为________.
设函数z=f(x)在点(1,1)处可微,且f(1,1)=1,,ψ(x)=f(x,f(x,x)),求ψ3(x)|x=1。
在曲线y=x2(x≥0)上某点A处作一切线,使之与曲线以及x轴所围成图形的面积为,试求:过切点A的切线方程。
设k>0,则函数f(x)=lnx-x/e+k的零点个数为().
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(,0).求L位于第一象限部分的一条切线,使得该切线与L以及两坐标轴所围图形的面积最小。
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
证明显然,f(x)是一个关于x的二次多项式,在闭区间[0,1]上连续,在开区间(0,1)内可导,且[*]故由罗尔定理知,存在ξ∈(0,1),使f’(ξ)=0.
随机试题
产品生命周期定价策略包含了价格折扣定价策略和心理定价策略。()
下列公司形态中,最晚产生的是()。
投资项目融资风险分析的内容包括()
某企业(业主)的一套加氢装置扩建安装工程由某施工单位承包。工程包括:动设备安装23台,静设备安装15台,非标设备现场制作240t,管道安装23000m。合同工期6个月。其中动、静设备安装,非标设备制作统称为设备安装工程,其直接工程费约300万元。合同规定:
某外国公司实际管理机构不在中国境内,也未在中国设立机构场所,2020年从中国境内某企业获得专有技术使用权转让收入200万元,该技术的成本80万元,从外商投资企业取得投资收益300万元。此外转让其在中国境内的房屋一栋,转让收入3000万元,原值1000万元,
某日,一位上车不久的乘客发现手提袋被人割开,装在里面的2000元钱不见了。乘客说上车前手提袋还是好的,因当时还没有人下车,于是司机把车开到附近的派出所。经过调查寻找,发现2000元已被扒手扔在椅子下面。嫌疑人有甲、乙、丙、丁。甲说:“反正不是我干的。”
不当得利就其性质属于()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
What’stheman’sfirstreactiontowhatthewomandescribe?
Theprocessofacquiringtheself-disciplineforJapanesebeginsinchildhood.Indeed,onemaysayitbeginsatbirth—howearly
最新回复
(
0
)