The standard deviation of n numbers x1, x2, x3…, xnwith mean is equal to , where S is the sum of the squared differences (xi-)2

admin2020-05-11  43

问题 The standard deviation of n numbers x1, x2, x3…, xnwith mean is equal to , where S is the sum of the squared differences (xi-)2 for 1≤i≤n. The values in list M are the integers 1, 3, and 5, where 1 occurs k times, 3 occurs once, and 5 occurs k times. If the standard deviation of the values in M is less than 1.95, what is the greatest possible value of k?

选项 A、3
B、5
C、7
D、9
E、11

答案D

解析 若没给标准差公式就无须具体计算,只需定性判断。本题给了公式就需要计算。由于有k个1和k个5,数组M的平均值为3。其方差为<1.95,解得k<9.63。由于k为正整数,k最大值为9,故答案为D。
转载请注明原文地址:https://jikaoti.com/ti/7CdYFFFM
本试题收录于: GRE QUANTITATIVE题库GRE分类
0

最新回复(0)