首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
构造正交矩阵Q,使得QTAQ是对角矩阵
构造正交矩阵Q,使得QTAQ是对角矩阵
admin
2020-03-16
32
问题
构造正交矩阵Q,使得Q
T
AQ是对角矩阵
选项
答案
(1)先求特征值 |λE-A|=[*]=λ(λ-2)(λ-6). A的特征值为0,2,6. 再求单位正交特征向量组 属于0的特征向量是齐次方程组AX=0的非零解, A=[*] 得AX=0的同解方程组[*] 求得一个非零解为(1,1,-1)
T
,单位化得 γ
1
=[*](1,1,-1)
T
. 属于2的特征向量是齐次方程组(A-2E)X=0的非零解, A-2E=[*] 得AX=0的同解方程组[*] 求得一个非零解为(1,-1,0)
T
,单位化得 γ
2
=[*](1,-1,0)
T
. 属于6的特征向量是齐次方程组(A-6E)X=0的非零解, A=[*] 得AX=0的同解方程组[*] 求得一个非零解为(1,1,2)
T
,单位化得 γ
3
=*](1,1,2)
T
作正交矩阵 Q=(γ
1
,γ
2
,γ
3
),则Q
T
AQ=Q
-1
AQ=[*] (2)先求特征值 |λE-A|=[*]=(λ-1)
2
(λ-10). A的特征值为1,1,10. 再求单位正交特征向量组 属于1的特征向量是齐次方程组(A-E)X=0的非零解, A-E=[*] 得(A-E)X=0的同解方程组χ
1
+2χ
2
-2χ
4
=0, 显然α
1
=(0,1,1)
T
是一个解.第2个解取为α
2
=(c,-1,1)
T
(保证了与α
1
的正交性!),代入方程求出c=4,即α
2
=(4,-1,1)
T
. 令γ
1
=α
1
/‖α
1
‖=[*](0,1,1)
T
,γ
2
是=α
2
/‖α
2
‖=[*](4,-1,1)
T
. 再求出属于10的特征向量是齐次方程组(A-10E)X=0的非零解(1,2,-2)
T
,令 γ
3
=α
3
‖α
3
‖=(1,2,-2)
T
/3. 作正交矩阵Q=(γ
1
,γ
2
,γ
3
). 则Q
T
AQ=Q
-1
AQ=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/6XARFFFM
0
考研数学二
相关试题推荐
下列矩阵是否相似于对角矩阵?为什么?
设z=其中f,g均可微,求
求
已知A2=0,A≠0,证明A不能相似对角化.
[2003年]设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y′≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程+(y+sinx)=0变换为y=y(x)满足的微分方程;
[2016年]以y=x2一ex和y=x2为特解的一阶非齐次线性微分方程为________.
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为.试求y=f(x)所满足的微分方程,并求该方程满足条件的解.
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且,求[img][/img]
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则()
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明:(1)aij=Aij←→ATA=E且|A|=1;(2)aij=一Aij←→ATA=E且|A|=一1.
随机试题
A、Hisinterest.B、Hisexperience.C、Hiseducation.D、Hiscomputerskills.B信息明示题。女士询问男士为什么他认为自己是这个职位的最合适的人选,男士回答因为他之前的经验符合这个职位的要
A、Shewilllearntobeacook.B、Shewillrunarestaurant.C、Shewillworkforhersister.D、Shewillhavearest.B对话中男士询问女士是否
下列物质中,既能与盐酸反应,又能与Na0H溶液反应的是()。
百草枯中毒后最为突出的临床表现是()
对照片层次、对比度关系的叙述,错误的是
特殊管理的药品是指
下列哪项不属于胎盘功能检查( )
对账的主要内容包括()。
一个人学会一门语言是通过犯错误并纠正错误来实现的。
从现代社会和各国政府行政实践来看,政府的基本职能可以分为()。
最新回复
(
0
)