首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
admin
2019-03-21
39
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),其中α
1
,α
2
,α
3
,α
4
均为4维列向量,且α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解.
选项
答案
由α
2
,α
3
,α
4
线性无关和α
1
=2α
2
一α
3
知矩阵A的秩为3,因此Ax=0的基础解系中只有一个解向量. 由α
1
一2α
2
+α
3
+0α
4
=0得 [*] 即齐次线性方程组Ax=0的基础解系为[*] 再由[*] 知[*] 为非齐次线性方程组Ax=β的一个特解,于是Ax=β的通解为 [*]
解析
本题考查抽象非齐次线性方程组的求解问题.所涉及的知识点是
(1)向量组线性相关性的判定.
向量组α
1
,α
2
……α
m
线性相关
向量组中至少有一个向量能用其余的m—1个向量线性表示;若α
1
,α
2
……α
r
线性相关,则α
1
,…,α
r
,α
r+1
…,α
m
仍线性相关.
(2)向量组极大无关组和秩概念.
r(A)=A的列秩=A的行秩.
(3)未知数的个数(n)一系数矩阵的秩r(A)=基础解系解向量的个数.
(4)非齐次线性方程组通解的结构.
若Ax=0的系数矩阵A的秩r(A)=r,则Ax=b通解x=k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
…+η
*
.
转载请注明原文地址:https://jikaoti.com/ti/6JLRFFFM
0
考研数学二
相关试题推荐
设矩阵Am×n的秩为r(A)=m<n,Im为m阶单位矩阵,则下述结论中正确的是()
设f’x(x0,y0),f’y(x0,y0)都存在,则().
设f(x)在R上是以T为周期的连续奇函数,则下列函数中不是周期函数的是().
设曲线y=y(x)满足xdy+(x一2y)dx=0,且y=y(x)与直线x=1及x轴所围的平面图形绕x轴旋转所得旋转体的体积最小,则y(x)=()
讨论函数f(x)=在x=0处的连续性与可导性.
求证:曲率半径为常数a的曲线是圆.
若行列式的第j列的每个元素都加1,则行列式的值增加.
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
证明n阶行列式
设4阶矩阵A与B相似,矩阵A的特征值为,E为3阶单元矩阵,则行列式|B一1一E|=__________.
随机试题
在我国引起缺铁性贫血的主要原因是()
下列试剂不能使一般生物碱呈色的是()
青年刘某在筹备婚礼的过程中,连续多日劳累,患化脓性扁桃体炎。到医院就医时发现他同时还患有淋病。该患者住院5天,扁桃体炎痊愈出院,医生嘱其充分休息。按照《母婴保健法》的规定,刘某
患者头痛如裹3日,痛无休止,肢体困重,舌苔白腻,脉濡。针灸治疗除主穴外,还应选取的配穴是()
耳屏前,下颌骨髁状突后缘的腧穴是()
A、7~10cmB、10~15cmC、15~20cmD、19~20cmE、21~23cm留灌肠的插管深度为()
逻辑式F=A+B可变换为()。
根据《环境影响评价技术导则一声环境》,在评价项目边界(厂界、场界)噪声时,评价量取样正确的是()。
属于进度纠偏的管理措施的是()。
某公司拟于5年后一次还清所欠债务100000元,假定银行利息率为10%,5年10%的年金终值系数为6.1051,5年10%的年金现值系数为3.7908,则应从现在起每年末等额存入银行的偿债基金为()元。
最新回复
(
0
)