首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行为(a,b,c),a,b,C不全为0,矩阵并且AB=0,求齐次线性方程组AX=0的通解.
已知3阶矩阵A的第一行为(a,b,c),a,b,C不全为0,矩阵并且AB=0,求齐次线性方程组AX=0的通解.
admin
2019-01-23
37
问题
已知3阶矩阵A的第一行为(a,b,c),a,b,C不全为0,矩阵
并且AB=0,求齐次线性方程组AX=0的通解.
选项
答案
由于AB=0,r(A)+r(B)≤3,并且B的3个列向量都是AX=0的解. (1)若k≠9,则r(B)=2,r(A)=1,AX=0的基础解系应该包含两个解.(1,2,3)
T
和(3,6,k)
T
都是解,并且它们线性无关,从而构成基础解系,通解为: c
1
(1,2,3)
T
+c
2
(3,6,k)
T
,其中c
1
,c
2
任意. (2)如果k=9,则r(B)=1,r(A)=1或2. ①r(A)=2,则AX=0的基础解系应该包含一个解,(1,2,3)
T
构成基础解系,通解为: c(1,2,3)
T
,其中c任意. ②r(A)=1,则AX=0的基础解系包含两个解,而此时曰的3个列向量两两相关,不能用其中的两个构成基础解系. 由r(A)=1,A的行向量组的秩为1,第一个行向量(a,b,c)(≠0!)构成最大无关组,因此第二,三个行向量都是(a,b,c)的倍数,从而AX=0和方程ax
1
+bx
2
+cx
3
=0同解.由于(1,2,3)
T
是解,有a+2b+3c=0,则a,b不都为0(否则a,b,c都为0),于是(b,一a,0)
T
也是ax
1
+bx
2
+cx
3
=0的一个非零解,它和(1,2,3)
T
线性无关,一起构成基础解系,通解为: c
1
(1,2,3)
T
+c
2
(b,一a,0)
T
,其中c
1
,c
2
任意.
解析
转载请注明原文地址:https://jikaoti.com/ti/5o1RFFFM
0
考研数学一
相关试题推荐
设常数a≤α<β≤b,曲线Г:y=(x∈[α,β])的弧长为l.(Ⅰ)求证:;(Ⅱ)求定积分J=
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值.证明:(1)A的特征向量都是B的特征向量;(2)B相似于对角矩阵.
设f(x)在(-∞,+∞)上可导.若f(x)为奇函数,证明fˊ(x)为偶函数;
设P为椭球面S:x2+y2+z2-yz=1上的动点,若S在点P的切平面与xOy面垂直,求P点的轨迹C,并计算曲面积分其中∑是椭球面S位于曲线C上方的部分。
求函数F(x)=的间断点,并判断它们的类型.
用列举法表示下列集合:方程x2-7x+12=0的根的集合.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα1=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设y=ex是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解.
试求z=f(x,y)=x3+y3一3xy在矩形闭域D={(x,y)|0≤x≤2,一1≤y≤2}上的最大值、最小值.
求极限
随机试题
中国上古的美育意识最主要体现在()
有关腕骨和手关节的叙述,错误的是
()是指领导者更愿意界定自己和下属的工作任务和角色,以完成组织目标。
公文正文的尾语一般包括()。
中国共产党同各民主党派合作的基本方针包括()。
甲从乙处购买一批医疗设备,在货物运输途中,甲又与丙签订合同将该批设备转卖给丙,随后由于不可抗力导致该批设备损毁。对此,下列说法正确的是()
把SQL嵌入语言使用时必须解决的问题中,没有()。
Thereare(36)TVchannels(频道)intheUnitedStates.Americansgetalotofentertainment(娱乐)and(37)fromTV.Mostpeople
Whatwillthelistenersdoattheevent?
Heis______ChinaDaily.Inotherwords,heworks______ChinaDaily.
最新回复
(
0
)