首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P-1AP=A。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P-1AP=A。
admin
2017-01-14
24
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求可逆矩阵P使得P
-1
AP=A。
选项
答案
(Ⅰ)由已知可得 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B。 由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆,所以P
1
-1
AP
1
=B,因此矩阵A与B相似,则 |λE-B|=[*]=(λ-1)
2
(λ-4), 矩阵B的特征值是1,1,4,故矩阵A的特征值为1,1,4。 (Ⅱ)由(E-B)x=0,得矩阵B对应于特征值λ=1的特征向量β
1
=(-1,1,0)
T
,β
2
=(-2,0,1)
T
;由(4E-B)x=0,得对应于特征值λ=4的特征向量β
3
=(0,1,1)
T
。 令P
2
=(β
1
,β
2
,β
3
)= [*] 即当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*] =(-α
1
+α
2
,-2α
1
+α
3
,α
2
+α
3
)时,有 P
-1
AP=Λ=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/5fwRFFFM
0
考研数学一
相关试题推荐
设A是m×n矩阵,B是n×m矩阵,则齐次线性方程组ABX=O().
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
设n阶矩阵A的元素全为1,则A的n个特征值是________.
行列式为f(x),则方程f(x)=0的根的个数为
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
基金公司为其客户提供几种不同的基金:一个货币市场基金,三种债券基金(短期债券、中期债券和长期债券),两种股票基金(适度风险股票和高风险股票)以及一个平衡基金.在所有只持有一种基金的客户中,持有各基金的客户比例分别为货币市场20%高
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
随机试题
发展出合理情绪想象技术的心理学家是()
Iwasabsorbed______whatIwasreadinganddidn’theartheknock.
最容易引起子宫破裂的胎位是
下列关于工频X线机的描述,正确的是
周围血管征常见于下列疾病,但除外()
急性心包积液的心影形态是
以下不是尺神经损伤表现的是()
ABC公司是一家大型国有企业,适用的企业所得税税率为25%,该公司要求的最低报酬率为10%。目前ABC公司面临甲、乙两个投资方案的决策。资料如下:资料一:甲、乙两个方案有关投资的数据资料如下表:假设两个方案的原始投资均是在0时点一次性
Hedoesn’thaveenoughtime______(finish)hishomework.
《刑法》第18条精神病人在不能辨认或者不能控制自己行为的时候造成危害结果,经法定程序鉴定确认的,不负刑事责任,但是应当责令他的家属或者监护人严加看管和医疗;在必要的时候,由政府强制医疗。间歇性的精神病人在精神正常的时候犯罪,应当负刑事责任。尚未完全丧失
最新回复
(
0
)