设α1,α2,α3,α4,α5均为4维列向量,下列说法中正确的是( )

admin2019-12-24  23

问题 设α1,α2,α3,α4,α5均为4维列向量,下列说法中正确的是(      )

选项 A、若α1,α2,α3,α4线性相关,那么当k1,k2,k3,k4不全为0时,k1α1+k2α2+k3α3+k4α4=0。
B、若α1,α2,α3,α4线性相关,那么当k1α1+k2α2+k3α3+k4α4=0时,k1,k2,k3,k4不全为0。
C、若α5不能由α1,α2,α3,α44线性表出,则α1,α2,α3,α4线性相关。
D、若α1,α2,α3,α4线性相关,则α5不能由α1,α2,α3,α4线性表出。

答案C

解析 对C项用反证法。假设α1,α2,α3,α4线性无关,因为α1,α2,α3,α4,α5必线性相关(5个4维列向量必线性相关),则α5可由α1,α2,α3,α4线性表出,矛盾。故α1,α2,α3,α4线性相关。
本题考查向量组线性相关性的判断,其中n+1个n维向量必线性相关。
转载请注明原文地址:https://jikaoti.com/ti/4qiRFFFM
0

最新回复(0)