首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn-1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn-1正交,则( )
设α1,α2,…,αn-1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn-1正交,则( )
admin
2019-06-06
37
问题
设α
1
,α
2
,…,α
n-1
是R
n
中线性无关的向量组,β
1
,β
2
与α
1
,α
2
,…,α
n-1
正交,则( )
选项
A、α
1
,α
2
,…,α
n-1
,β
1
必线性相关。
B、α
1
,α
2
,…,α
n-1
,β
1
,β
2
必线性无关。
C、β
1
,β
2
必线性相关。
D、β
1
,β
2
必线性无关。
答案
C
解析
由n+1个n维向量必线性相关可知(B)选项错。
若α
i
(i=1,2,…,n一1)是第i个分量为1,其余分量全为0的向量,β
1
是第n个分量为1,其余分量全为0的向量,β
2
是第n个分量为2,其余分量全为0的向量,则α
1
,α
2
,…,α
n-1
,β
1
线性无关,β
2
=2β
1
,所以选项(A)和(D)错误。
下证(C)选项正确:
因α
1
,α
2
,…,α
n-1
,β
1
,β
2
必线性相关,所以存在n+1个不全为零的常数k
1
,k
2
,…,k
n-1
,l
1
,l
2
,使
k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
+l
1
β
1
+l
2
β
2
=0,
又因为α
1
,α
2
,…,α
n-1
线性无关,所以l
1
,l
2
一定不全为零,否则α
1
,α
2
,…,α
n-1
线性相关,产生矛盾。
在上式两端分别与β
1
,β
2
作内积,有
(l
1
β
1
+l
2
β
2
,β
1
)=0, (1)
(l
1
β
1
+l
2
β
2
,β
2
)=0, (2)
联立两式,l
1
×(1)+l
2
×(2)可得
(l
1
β
1
+l
2
β
2
,l
1
β
1
+l
2
β
2
)=0,
从而可得l
1
β
1
+l
2
β
2
=0,
故β
1
,β
2
必线性相关。故选(C)。
转载请注明原文地址:https://jikaoti.com/ti/44LRFFFM
0
考研数学二
相关试题推荐
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为ξ1=,求Anβ.
设向量组α1=试问:当a,b,c满足什么条件时β可由α1,α2,α3线性表出,但表示不唯一,并求出一般表达式.
设产品的需求函数和供给函数分别为Qd=14-2P,Qs=-4+2P若厂商以供需一致来控制产量,政府对产品征收的税率为t,求:(1)t为何值时.征税收益最大,最大值是多少?(2)征税前后的均衡价格和均衡产量.
直线y=x将椭圆x2+3y2=6y分为两块,设小块面积为A,大块面积为B,求的值.
已知A=,A*是A的伴随矩阵,求A*的特征值与特征向量.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
已知f(x)为周期函数,那么下列各函数是否都是周期函数?(1)f2(x)(2)f(2x)(3)f(x+2)(4)f(x)+2
讨论曲线y=4lnx+k与y=4x+ln4x的交点个数。
设z=f(x2一y2,exy),其中f具有连续二阶偏导数,求。
求∫exsin2xdx.
随机试题
公民、法人或者其他组织对被申请人重新作出的具体行政行为不服,可以依法申请行政复议或者提起行政诉讼()
板厚处理的主要内容是什么?
关于肝性脑病的治疗,下述哪项是错误的
A.柏子B.鹅不食草C.柴胡D.大黄E.干漆通过炒制或蜜制可以减少副作用的是()。
民法是调整平等主体的公民之间、法人之间以及他们相互之间的()的法律规范的总称。
依据《中华人民共和国环境影响评价法》,对建设项目的环境影响评价应当按()实行分类管理。
下列哪些费用或价值应计入进口货物的完税价格:
著作权使用许可合同应经过版权行政管理部门登记后生效。()
Thistypeofcomputerissuperiortothattype.
TheeldersofcontemporaryAmericans______.Fivehundredcritically-illpatientswereinvestigatedwiththemainpurposeof__
最新回复
(
0
)