首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)、g(x)在[一a,a](a>0)上连续,g(x)为偶函数,且满足f(x)+f(一x)=A(A为常数). (1)试证:∫—aaf(x)g(x)dx=A∫0ag(x)dx; (2)计算:|sinx|arctanexdx.
设f(x)、g(x)在[一a,a](a>0)上连续,g(x)为偶函数,且满足f(x)+f(一x)=A(A为常数). (1)试证:∫—aaf(x)g(x)dx=A∫0ag(x)dx; (2)计算:|sinx|arctanexdx.
admin
2017-07-26
32
问题
设f(x)、g(x)在[一a,a](a>0)上连续,g(x)为偶函数,且满足f(x)+f(一x)=A(A为常数).
(1)试证:∫
—a
a
f(x)g(x)dx=A∫
0
a
g(x)dx;
(2)计算:
|sinx|arctane
x
dx.
选项
答案
(1)∫
—a
a
f(x)g(x)dx=∫
—a
0
f(x)g(x)dx+∫
0
a
f(x)g(x)dx, 又f(x)g(x)dx[*]∫
0
a
f(一t)g(一t)dt,所以, ∫
—a
a
f(x)g(x)dx=∫
0
a
f(一t)g(一t)dt+∫
0
a
f(x)g(x)dx =∫
0
a
f(—x)g(x)dx+∫
0
a
f(x)g(x)dx =∫
0
a
[f(—x)+f(x)]g(x)dx =A∫
0
a
g(x)dx, 故 ∫
—a
a
f(x)g(x)dx=A∫
0
a
g(x)dx. (2)在积分[*]|sinx|arctane
x
dx中,f(x)=arctane
x
,g(x)=|sinx|.因为g(一x)= g(x),由 [f(x)+f(一x)]’=(arctane
x
+arctane
—x
)’=[*]=0, 可知 f(x)+f(一x)=arctane
x
+arctane
—x
=c(常数), 即 arctane
x
+arctane
x
=arctane
0
+arctane
0
=[*], 所以,f(x),g(x)满足已证结论的条件,故 [*]
解析
先拆分,经变量替换转化为同一区间上的积分后再合并.
转载请注明原文地址:https://jikaoti.com/ti/42SRFFFM
0
考研数学三
相关试题推荐
[*]
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
若四阶矩阵A与B为相似矩阵,A的特征值为1/2、1/3、1/4、1/5,则行列式|B-1-E|=_______.
设总体X~N(0,σ2),X1,X2,X3,X4为总体X的简单随机样本,
已知矩阵有三个线性无关的特征向量,求a的值,并求An
用配方法化下列二次型为标准形:f(x1,x2,x3)=2x1x2+2x1x3+6x2x3.
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中(1)求正交变换X=QY将二次型化为标准形;(2)求矩阵A.
设平面区域D用极坐标表示为
设f(x)在(-∞,+∞)内有定义,且对任意x∈(-∞,+∞),y∈(-∞,+∞),f(x+y)=f(x)ey+f(y)ex成立,且fˊ(0)存在等于a,a≠0,则f(x)=_________.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)一f(y)|≤M|x一y|k.证明:当k>0时,f(x)在[a,b]上连续;
随机试题
定义无符号整数类为UInt,下面可以作为类UInt实例化值的是( )。
以下除哪项外,均为少阴热化证的主证
A.蚊B.蜱C.蚤D.虱E.螨普氏立克次体的传播媒介是
黏液囊肿常发生于()
外感热病中,正邪相争提示病变发展转折点的是( )。
A.过氧乙酸B.甲醛C.碘酊D.苯扎溴铵E.乙醇需加防锈剂的化学消毒剂是
下列关于工程地质的说法,错误的是()。
矛盾的普遍性与特殊性是矛盾的两种基本属性。()
某员工想高薪水,但又怕被经理拒绝或被炒鱿鱼。员工的这种心理冲突是()。(华东师范大学)
AftervisitingWidenerUniversityandlearningaboutitsprogramrequiring300hoursofcommunityserviceinthesurroundingpoo
最新回复
(
0
)